【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

【答案】D

【解析】

由折線長度變化規(guī)律可知“次構(gòu)造”后的折線長度為,由此得到,利用運算法則可知,由此計算得到結(jié)果.

記初始線段長度為,則“一次構(gòu)造”后的折線長度為,“二次構(gòu)造”后的折線長度為,以此類推,“次構(gòu)造”后的折線長度為

若得到的折線長度為初始線段長度的倍,則,即,

,

至少需要次構(gòu)造.

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光農(nóng)業(yè)科學(xué)研究所對冬季晝夜溫差大小與反季節(jié)土豆發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

26

32

26

16

設(shè)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點,圓經(jīng)過點和定點,且圓心在直線上.

(1)求圓的方程;

(2)已知點為圓直徑的一個端點,若另一端點為點,問軸上是否存在一點,使得為直角三角形,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))在上有兩個零點,則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的命題的是(

A.已知隨機變量服從二項分布,若,,則;

B.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差恒不變;

C.設(shè)隨機變量服從正態(tài)分布,若,則

D.某人在10次射擊中,擊中目標(biāo)的次數(shù)為,則當(dāng)時概率最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為直平行六面體.命題為正方體;命題的任意體對角線與其不相交的面對角線垂直.則命題是命題的( )條件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯(lián)安裝,二級過濾器與三級過濾器為串聯(lián)安裝。

其中每一級過濾都由核心部件濾芯來實現(xiàn)。在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立),三級濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個元,二級濾芯每個元.若客戶在使用過程中單獨購買濾芯,則一級濾芯每個元,二級濾芯每個元。現(xiàn)需決策安裝凈水系統(tǒng)的同時購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個一級過濾器更換的濾芯個數(shù)制成的柱狀圖,表是根據(jù)個二級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表.

二級濾芯更換頻數(shù)分布表

二級濾芯更換的個數(shù)

頻數(shù)

個一級過濾器更換濾芯的頻率代替個一級過濾器更換濾芯發(fā)生的概率,以個二級過濾器更換濾芯的頻率代替個二級過濾器更換濾芯發(fā)生的概率.

(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為的概率;

(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;

(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是實數(shù)集上的奇函數(shù), 當(dāng)時, .

(1)求的值;

(2)求函數(shù)的表達(dá)式;

(3)求證:方程在區(qū)間(0,+∞)上有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定圓,動圓過點且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點上運動,關(guān)于原點對稱,且,當(dāng)的面積最小時, 求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案