【題目】給出下列命題:
①存在實(shí)數(shù)x,使
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù) 的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(﹣x),當(dāng)0≤x≤1時,f(x)=2x,
則f(2015)=﹣2.
其中正確命題是(寫出所有正確命題的序號).

【答案】④
【解析】解:對于①,由 sinx+cosx= sin(x+ ;不可能,故錯;
對于②,舉反例:α=4200 , β=100是第一象限角,且α>β,則cosα>cosβ,故錯;
對于③,函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù)y=2sin2(x+ )的圖象,故錯;
對于④,定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(﹣x)f(x+2)=f(﹣x)=﹣f(x)f(x+4)=f(x)周期T=4;則f(2015)=f(3)=f(﹣1)=﹣f(1)=﹣2,故正確.
故答案:④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)棱底面,且側(cè)棱的長是,點(diǎn)分別是的中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)當(dāng)x∈[﹣ , ]時,求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,角,的內(nèi)角,其所對的邊分別為,.

(1)當(dāng)取得最大值時,求角的大;

(2)在(1)成立的條件下,當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C.

1)若直線過定點(diǎn),且與圓C相切,求方程;

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與圓 且與橢圓相交于兩點(diǎn).

(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長

(2)設(shè)直線的斜率分別為,判斷是否為定值,并說明理由

(3)求,面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,.

1求數(shù)列的通項(xiàng)公式;

2設(shè),,記數(shù)列的前項(xiàng)和.若對, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)軸正半軸上,過點(diǎn)的直線交拋物線于兩點(diǎn),線段的長是, 的中點(diǎn)到軸的距離是.

(1)求拋物線的標(biāo)準(zhǔn)方程;

2過點(diǎn)作斜率為的直線與拋物線交于兩點(diǎn),直線交拋物線于

求證 軸為的角平分線;

②若交拋物線于,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷一批進(jìn)價為每件30元的商品在市場試銷中發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:

x

30

40

45

50

y

60

30

15

0

在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(x,y)的對應(yīng)點(diǎn),并確定yx的一個函數(shù)關(guān)系式;

(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

同步練習(xí)冊答案