(12分)如圖,已知正三棱柱
的底面正三角形的邊長是2,D是
的中點,直線
與側(cè)面
所成的角是
.
(Ⅰ)求二面角
的正切值;
(Ⅱ)求點
到平面
的距離.
解:解法一(1)設側(cè)棱長為
,取
BC中點
E,
則
面
,∴
∴
解得
……3分
過
E作
于
,連
,
則
,
為二面角
的平面角
∵
,
,∴
………… 6分
(2)由(1)知
面
,∴面
面
過
作
于
,則
面
∴
∴
到面
的距離為
………… 12分
解法二:(1)求側(cè)棱長
……………3分
取
BC中點
E , 如圖建立空間直角坐標系
,
則
,
,
,
設
是平面
的一個法向量,則由
得
而
是面
的一個法向量
∴
.而所求二面角為銳角,
……6分
(2)∵
∴點
到面
的距離為
…… 12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,正方形
和矩形
所在平面相互垂直,
是
的中點.
(I)求證:
;
(Ⅱ)若直線
與平面
成45
o角,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖(1),在直角梯形
中,
、
、
分別是線段
、
、
的中點,現(xiàn)將
折起,使平面
平面
(如圖(2)).
(Ⅰ)求證:
平面
;
(Ⅱ)取
中點為
,求證:
平面
,
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分) .某高速公路收費站入口處的安全標識墩如圖4所示,墩的上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH ,圖5、圖6分別是該標識墩的正(主)視圖和俯視圖.
(1)請畫出該安全標識墩的側(cè)(左)視圖;
(2)求該安全標識墩的體積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,已知
平面
,
是矩形,
,
,
是
中點,點
在
邊上.
(I)求三棱錐
的體積;
(II)求證:
;
(III)若
平面
,試確定
點的位置.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
長方體ABCD—A
B
CD中,
,則點
到直線AC的距離是
A.3 | B. | C. | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在直三棱柱
—
中,若∠BAC=
,
,則異面直線
與
所成的角等于_________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示,在直三棱柱ABC-A
1B
1C
1中,底面為直角三角形,∠ACB=90°,AC=
,BC=CC
1=1,P是BC
1上一動點,則
的最小值是_____.
查看答案和解析>>