精英家教網 > 高中數學 > 題目詳情

【題目】中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

【答案】A

【解析】分析該題屬于有限制條件的排列問題,在解題的過程中,需要分情況討論,因為“數”必須排在前三節(jié),這個就是不動的,就剩下了五個不同的元素,所以需要對“數”的位置分三種情況,對于相鄰元素應用捆綁法來解決即可.

詳解:當“數”排在第一節(jié)時有排法,當“數”排在第二節(jié)時有種排法,當“數”排在第三節(jié)時,當“射”和“御”兩門課程排在第一、二節(jié)時有種排法,當“射”和“御”兩門課程排在后三節(jié)的時候有種排法,所以滿足條件的共有種排法,故選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數, 是函數的導函數,則的圖象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若正四面體PQMN的頂點分別在給定的四面體ABCD的面上,每個面上恰有一個點,那么,( ).

A. 當四面體ABCD是正四面體時,正四面體PQMN有無數個,否則,正四面體PQMN只有一個

B. 當四面體ABCD是正四面體時,正四面體PQMN有無數個,否則,正四面體PQMN不存在

C. 當四面體ABCD的三組對棱分別相等時,正四面體PQMN有無數個,否則,正四面體PQMN只有一個

D. 對任何四面體ABCD,正四面體PQMN都有無數個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點.

(1)求橢圓的標準方程;

(2)過點的直線交橢圓于兩點,軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax3+bx2+cx+dx=1處取極小值,x=3處取極大值,且函數圖象在(2f(2))處的切線與直線x-5y=0平行.

1)求實數abc的值;

2)設函數f(x)=0有三個不相等的實數根,求d的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】最近的一次數學競賽共6道試題,每題答對得7分,答錯(或不答)0.賽后某參賽代表隊獲團體總分161分,且統(tǒng)計分數時發(fā)現(xiàn):該隊任兩名選手至多答對兩道相同的題目.沒有三名選手都答對兩道相同的題目.試問該隊選手至少有多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結束后所得分的分布列和數學期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20個兩兩不同的正整數,且集合中有201個不同的元素.求集合中不同元素個數的最小可能值.

查看答案和解析>>

同步練習冊答案