函數(shù)在y=x2-x+1區(qū)間[-3,0]上的最值為( 。
A、最大值13,最小值為
3
4
B、最大值1,最小值為4
C、最大值13,最小值為1
D、最大值-1,最小值為-7
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的解析式,我們可以分析函數(shù)的開(kāi)口方向及對(duì)稱軸,結(jié)合二次函數(shù)的性質(zhì),易求出函數(shù)的最大值和最小值,進(jìn)而得到函數(shù)的值域.
解答: 解:函數(shù)y=x2-x+1的圖象是開(kāi)口朝上,且以x=
1
2
為對(duì)稱軸的拋物線
故函數(shù)y=x2-x+1在區(qū)間[-3,0]上單調(diào)遞減,
當(dāng)x=-3時(shí),ymax=13
當(dāng)x=0時(shí),ymin=1
故函數(shù)y=x2-x+1在區(qū)間[-3,0]上的最大值13,最小值為1,
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)二次函數(shù)在閉區(qū)間上的最值,其中分析出函數(shù)的圖象和性質(zhì)進(jìn)而分析出函數(shù)的最值,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1B1上的兩個(gè)不同的動(dòng)點(diǎn).
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.
以上命題為真命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2x4-
1
x
10的展開(kāi)式中的常數(shù)項(xiàng)為(  )
A、170B、180
C、190D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中是奇函數(shù)且存在零點(diǎn)的是( 。
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=sin|x|
D、f(x)=ln(
x2+1
-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=2,
b
=(1,0),
a
b
=-1,則|2
a
+3
b
|等于(  )
A、
13
B、
10
C、
11
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z滿足z(1+i)=|1-
3
i|,則z的共軛復(fù)數(shù)
.
z
對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(1+i)3-(1-i)3在平面直角坐標(biāo)系中對(duì)應(yīng)的點(diǎn)為(  )
A、(0,-4)
B、(0,4)
C、(4,0)
D、(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-lnx
x+1
,對(duì)函數(shù)f(x)定義域內(nèi)的任意x,都有xf(x)<m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(1,+∞)
B、(-∞,1)
C、(6,+∞)
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:對(duì)于m∈[-1,1],不等式a2-5a-3≥
m2+8
恒成立;命題q:不等式x2+ax+2<0有解,若p∨q為真,且p∧q為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案