如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,
(1)求證:BE=2AD;
(2)求函數(shù)AC=1,EC=2時,求AD的長.
分析:(1)連接DE,因為ACED是圓的內接四邊形,所以△BDE∽△BCA,由此能夠證明BE=2AD.
(2)由條件得AB=2AC=2,根據割線定理得BD•BA=BE•BC,即(AB-AD)•BA=2AD•(2AD+CE),由此能求出AD.
解答:(1)證明:連接DE,
∵ACED是圓的內接四邊形,
∴∠BDE=∠BCA,
∵∠DBE=∠CBA,
∴△BDE∽△BCA,
BE
BA
=
DE
CA

∵AB=2AC,
∴BE=2DE.
∵CD是∠ACB的平分線,
∴AD=DE,
從而BE=2AD.(5分)
(2)解:由條件得AB=2AC=2,
設AD=t,根據割線定理得
BD•BA=BE•BC,
∴(AB-AD)•BA=2AD•(2AD+CE),
∴(2-t)×2=2t(2t+2),
∴2t2+3t-2=0,
解得t=
1
2
,即AD=
1
2
.(10分)
點評:本題考查與圓有關的比例線段的應用,是中檔題.解題時要認真審題,仔細解答,注意圓的內接四邊形的性質和切割線定理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,設
AB
=a
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習冊答案