設(shè),, 其中是不等于零的常數(shù),
(1)、(理)寫出的定義域(2分);
(文)時(shí),直接寫出的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:,.其中,表示函數(shù)上的最小值,
表示函數(shù)上的最大值.例如:,,則 ,   ,
(理)當(dāng)時(shí),設(shè),不等式
恒成立,求的取值范圍(11分);
(文)當(dāng)時(shí),恒成立,求的取值范圍(8分);

解析
(1)、                            2分
(2)、時(shí),遞增  ;時(shí),遞增                            
時(shí),遞增                         
(3)、由題知:                       1分
所以,                               1分
                                   1分
                                 1分
                              
                            1分
                                 1分
                                  1分
                           1分
                                        1分
                                                 2分
(文)
(1)、                                               4分
(2)、時(shí),遞增                                  2分
時(shí),遞增                             2分
時(shí),遞增     

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)y=f(x)=x2-2x+4的定義域、值域都是閉區(qū)間[2,2b],求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
(1)已知是一次函數(shù),且,,求的解析式;
(2)已知是二次函數(shù),且,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)函數(shù)f(x)=m-mx-1.
(1)若對于一切實(shí)數(shù)x,f(x)<0恒成立,求m的取值范圍;
(2)對于x∈[1,3],f(x)<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題滿分14分)
設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(1)求P點(diǎn)的縱坐標(biāo);
(2)若;
(3)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)  
設(shè),  
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
設(shè)實(shí)數(shù), 設(shè)函數(shù)的最大值為。
(1)設(shè),求的取值范圍,并把表示為的函數(shù)
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明函數(shù)在(-∞,0)上是增函數(shù)。

查看答案和解析>>

同步練習(xí)冊答案