精英家教網 > 高中數學 > 題目詳情

【題目】下列有關命題的說法正確的是( )

A. 命題“若,則”的否命題為:“若

B. 為真命題,為假命題,則均為假命題

C. 命題“若成等比數列,則”的逆命題為真命題

D. 命題“若,則”的逆否命題為真命題

【答案】D

【解析】

分別寫出命題的否命題,可判定A不正確;根據復合命題的真假判定,可判定B不正確;根據等比數列的定義,即可判定C不正確;根據四種命題的關系,可判定D正確,得到答案.

對于A中,命題“若,則”的否命題為:“若”,所以不正確;

對于B中,由為真命題,為假命題,則為真命題,均為假命題,所以不正確;

對于C中,命題“若成等比數列,則”的逆命題為“若,則成等比數列”為假命題,所以不正確;

對于D中,命題“若,則”為真命題,所以命題的逆否命題也是真命題,故選D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校高一舉行了一次數學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為)作為樣本(樣本容量為)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]頻數分別為8,2.

(1)求樣本容量和頻率分布直方圖中的的值;

(2)估計本次競賽學生成績的中位數;

(3)在選取的樣本中,從競賽成績在分以上(含分)的學生中隨機抽取名學生,求所抽取的名學生中至少有一人得分在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)若對任意,,都有,求實數的取值范圍;

2)在第(1)問求出的實數的范圍內,若存在一個與有關的負數,使得對任意恒成立,求的最小值及相應的.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某電商2019121日至1216日的日銷售量(單位:件)統(tǒng)計圖,銷量小于100稱為該商品滯銷,銷量大于200稱為該商品暢銷,則下列關于該商品在這16天的銷量的說法不正確的是( )

A.該商品出現過連續(xù)4天暢銷

B.該商品暢銷的頻率為0.5

C.相鄰兩天該商品銷量之差的最大值為195

D.該商品銷量的平均數小于200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;

(2)以各組數據的中間數代表這組數據的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元/千克收購;

B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.

請你通過計算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓

(1)求圓關于直線對稱的圓的標準方程;

(2)過點的直線被圓截得的弦長為8,求直線的方程;

(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】連結圓周上九個不同點的36條弦要么染成紅色,要么染成藍色,我們稱它們?yōu)?/span>紅邊藍邊”.假定由這九個點中每三個點為頂點的三角形中都含有紅邊”.證明:這九個點中存在四個點,兩兩連結的六條邊都是紅邊.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然底數),.

(1)當時,對任意的,都有不等式,求實數的取值范圍;

(2)若函數上的減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體,關于其結構特征,下列說法不正確的是

A. 該幾何體是由兩個同底的四棱錐組成的幾何體

B. 該幾何體有12條棱、6個頂點

C. 該幾何體有8個面,并且各面均為三角形

D. 該幾何體有9個面,其中一個面是四邊形,其余均為三角形

查看答案和解析>>

同步練習冊答案