若loga
2
3
>1,則a的取值范圍是
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由1=logaa,再討論底數(shù)與1的關(guān)系,確定函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性整理出關(guān)于a的不等式,得到結(jié)果,把兩種情況求并集得到結(jié)果.
解答: 解:∵loga
2
3
>1
∴l(xiāng)oga
2
3
>logaa,
當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),
2
3
>a,為空集,
當(dāng)0<a<1時(shí),函數(shù)是一個(gè)減函數(shù),根據(jù)函數(shù)的單調(diào)性有
2
3
<a,可知a的取值范圍是
2
3
<a<1.
綜上可知a的取值范圍是(
2
3
,1)
故答案為:(
2
3
,1)
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)單調(diào)性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),本題解題的關(guān)鍵是對(duì)于底數(shù)與1的關(guān)系,這里應(yīng)用分類(lèi)討論思想來(lái)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A是圓F1:(x+
3
2+y2=16上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱(chēng).線(xiàn)段AF2的中垂線(xiàn)m分別與AF1AF2交于M、N兩點(diǎn).
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線(xiàn)l與該橢圓交于P,Q兩點(diǎn),滿(mǎn)足直線(xiàn)OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f﹙x﹚=
2x
1+|x|
﹙x∈R﹚,區(qū)間M=[a,b](a<b),集合N={y|y=f﹙x﹚,x∈M},則使M=N成立的實(shí)數(shù)對(duì)(a,b)有
 
對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b,c分別是△ABC的A,B,C所對(duì)的三邊,且csinC=3asinA+3bsinB,則圓M:x2+y2=12被直線(xiàn)l:ax-by+c=0所截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿(mǎn)足|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
2i
1-i
在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)所在的象限是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={m|m=6n,n∈N*,且m<60}中所有元素的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β為銳角,且cos(α+β)=
3
5
,sin(α-β)=
5
13
,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在同一坐標(biāo)系中,表示函數(shù)y=logax與y=x+a的圖象正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案