【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷?/span>個(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)?/span>個(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).
若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;
若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過(guò)元,求的最小值.
【答案】;.
【解析】
設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;
由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡(jiǎn)得,由題意可知,,即,求出的最小值.
設(shè)顧客獲得三等獎(jiǎng)為事件,
因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,
顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,
所以;
由題意可知,隨機(jī)變量的可能取值為,,,
且,
,
,
所以隨機(jī)變量的數(shù)學(xué)期望,
,
化簡(jiǎn)得,
由題意可知,,即,
化簡(jiǎn)得,因?yàn)?/span>,解得,
即的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是(t是參數(shù)).在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線.
(1)當(dāng),時(shí),求直線l與曲線C的直角坐標(biāo)方程;
(2)當(dāng)時(shí),若直線l與曲線C相交于A,B兩點(diǎn),設(shè),且,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(jià)(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的估計(jì)值分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若直線與相切于第二象限的點(diǎn),與交于,兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,是邊長(zhǎng)為4的正方形,平面,分別為的中點(diǎn).
(1)證明:平面.
(2)若,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無(wú)底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過(guò)單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機(jī)選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
甲公司天數(shù) | 10 | 10 | 15 | 10 | 5 |
乙公司天數(shù) | 10 | 15 | 10 | 10 | 5 |
(1)從記錄甲公司的天送餐單數(shù)中隨機(jī)抽取天,求這天的送餐單數(shù)都不小于單的概率;
(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個(gè)問(wèn)題:
①求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;
②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:平面內(nèi)兩個(gè)分別以原點(diǎn)和兩坐標(biāo)軸為對(duì)稱中心和對(duì)稱軸的橢圓E1,E2,它們的長(zhǎng)短半軸長(zhǎng)分別為a1,b1和a2,b2,若滿足a2=a1k,b2=b1k(k∈Z,k≥2),則稱E2為E1的k級(jí)相似橢圓,己知橢圓E1: =1,E2為E1的2級(jí)相似橢圓,且焦點(diǎn)共軸,E1與E2的離心率之比為2:.
(Ⅰ)求E2的方程;
(Ⅱ)已知P為E2上任意一點(diǎn),過(guò)點(diǎn)P作E1的兩條切線,切點(diǎn)分別為A(x1,y1)、B(x2,y2).
①證明:E1在A(x1,y1)處的切線方程為=1;
②是否存在一定點(diǎn)到直線AB的距離為定值,若存在,求出該定點(diǎn)和定值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com