【題目】已知y=f(x)(x∈R)是偶函數(shù),當x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時都成立,求m的取值范圍.

【答案】
(1)解:當x<0時,有﹣x>0,

∵f(x)為偶函數(shù),∴f(x)=f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,

∴f(x)=


(2)解:由題意得x2﹣2x≥mx在1≤x≤2時都成立,即x﹣2≥m在1≤x≤2時都成立,

即m≤x﹣2在1≤x≤2時都成立.

而在1≤x≤2時,(x﹣2)min=﹣1,∴m≤﹣1


【解析】(1)當x<0時,有﹣x>0,由f(x)為偶函數(shù),求得此時f(x)=f(﹣x)的解析式,從而得到函數(shù)f(x)在R上的解析式.(2)由題意得m≤x﹣2在1≤x≤2時都成立,而在1≤x≤2時,求得(x﹣2)min=﹣1,由此可得m的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

)求 被選中的概率;

)求 不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在30分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.

分數(shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(I)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,能否判斷數(shù)學成績與性別有關(guān);

(II)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關(guān)”. (,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義在R上的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式f(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在(﹣1,1)上的函數(shù)f(x)滿足:f(x)﹣f(y)=f( ),當x∈(﹣1,0)時,有f(x)>0;若P=f( )+f( ),Q=f( ),R=f(0);則P,Q,R的大小關(guān)系為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處有極值10.

(Ⅰ)求實數(shù) 的值;

(Ⅱ)設(shè)時,討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=(2﹣2m)x﹣f(x);
①若函數(shù)g(x)在x∈[0,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
②求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=f(x)的圖象按向量 平移后得到函數(shù) 的圖象,則函數(shù)y=f(x)單調(diào)遞增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|x2﹣3x≤10},N={x|a﹣1≤x≤2a+1}.
(1)若a=2,求(RM)∪N;
(2)若M∪N=M,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案