【題目】給出下列4個(gè)命題,其中正確命題的個(gè)數(shù)是( )
①計(jì)算:9192除以100的余數(shù)是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù);
④命題p:“|a|+|b|≤1”是命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:①由于9192=(100﹣9)92=C92010092(﹣9)0+…+C92911001(﹣9)91+C92921000(﹣9)92 ,
在此展開(kāi)式中,除了最后一項(xiàng)外,其余的項(xiàng)都能被100整除,故9192除以100的余數(shù)等價(jià)于C92921000(﹣9)92=992除以100的余數(shù),而992=(10﹣1)92=C9201092(﹣1)0+…+C9291101(﹣1)91+C9292100(﹣9)92 , 故992除以100的余數(shù)等價(jià)于C9291101(﹣1)91+C9292100(﹣9)92除以100的余數(shù),而C9291101(﹣1)91+C9292100(﹣9)92=﹣919=﹣10×100+81,故9192除以100的余數(shù)是81.不正確.故①錯(cuò)誤;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”,正確;
③y=tanax(a>0)在其定義域內(nèi)不是單調(diào)函數(shù),是奇函數(shù);故③錯(cuò)誤,
④當(dāng)a=b=0時(shí),不等式asinx+bcosx≤1恒成立.
a與b不全為0時(shí),不等式asinx+bcosx≤1化為:sin(x+θ)≤ ,
∵對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”,
∴ ≥1,
∴a2+b2≤1,畫出圖象:可知:(a,b)表示的是以原點(diǎn)為圓心,1為半徑的圓及其內(nèi)部.
而|a|+|b|≤1可知:(a,b)表示的是正方形ABCD及其內(nèi)部.
∴p是q的充分不必要條件.故④正確,
故選:B
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)當(dāng)a= 時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥ x對(duì)任意的x>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知曲線,將曲線上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍和倍后,得到曲線
(1)試寫出曲線的參數(shù)方程;
(2)在曲線上求點(diǎn),使得點(diǎn)到直線的距離最大,并求距離最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬(wàn)件)之間大體滿足關(guān)系: (其中c為小于6的正常數(shù)). (注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)出1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,2)上產(chǎn)生的均勻隨機(jī)數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某班級(jí)舉辦一次“追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng).現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:
序號(hào) | 分?jǐn)?shù)段 | 人數(shù) | 頻率 |
1 | 10 | 0.20 | |
2 | ① | 0.44 | |
3 | ② | ③ | |
4 | 4 | 0.08 | |
合計(jì) | 50 | 1 |
(1)填充上述表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
(2)若利用組中值近似計(jì)算數(shù)據(jù)的平均數(shù),求此次數(shù)學(xué)史初賽的平均成績(jī);
(3)甲同學(xué)的初賽成績(jī)?cè)?/span>,學(xué)校為了宣傳班級(jí)的學(xué)習(xí)經(jīng)驗(yàn),隨機(jī)抽取分?jǐn)?shù)在的4位同學(xué)中的兩位同學(xué)到學(xué)校其他班級(jí)介紹,求甲同學(xué)被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動(dòng)點(diǎn),當(dāng) 為何值時(shí),二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的偶函數(shù),當(dāng)時(shí),.
Ⅰ.寫出在上的解析式;
Ⅱ.求出在上的最大值;
Ⅲ.若是上的增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com