某機(jī)床廠2001年年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,對機(jī)床的處理方案有兩種:
方案一:當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;
方案二:當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.
請你研究一下哪種方案處理較為合理?請說明理由.
解:(1)由題意,根據(jù)第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,可得
(2分)
(2)方案一:∵
(2分)
∵
,
當(dāng)且僅當(dāng)
時(shí),即x=7 時(shí)等號成立
故到2008年,年平均盈利額達(dá)到最大值,工廠共獲利為12×7+30=114 萬元.(2分)
方案二:y=-2x
2+40x-98=-(x-10)
2+102 (1分)
當(dāng)x=10 時(shí)y
max=102
故到2011年,盈利額達(dá)到最大值,工廠共獲利為102+12=114 萬元.(2分)
盈利額達(dá)到的最大值相同,而方案一所用的時(shí)間較短,故方案一比較合理.(1分)
分析:(1)由題意,根據(jù)第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,由此可得y與x之間的函數(shù)關(guān)系式;
(2)方案一:
,利用基本不等式可求最值
方案二:y=-2x
2+40x-98=-(x-10)
2+102,利用配方法求最值,比較即可得到結(jié)論.
點(diǎn)評:本題考查函數(shù)模型的構(gòu)建,考查利用基本不等式與配方法求函數(shù)的最值,屬于中檔題.
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年江蘇省鹽城市濱海中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
某機(jī)床廠2001年年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,對機(jī)床的處理方案有兩種:
方案一:當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;
方案二:當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.
請你研究一下哪種方案處理較為合理?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年山東省青島市膠州一中高三(上)期末數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
某機(jī)床廠2001年年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,對機(jī)床的處理方案有兩種:
方案一:當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;
方案二:當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.
請你研究一下哪種方案處理較為合理?請說明理由.
查看答案和解析>>