已知函數(shù)f(x)=的定義域?yàn)榧螦,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)先求出集合A,化簡(jiǎn)集合B,根據(jù) 根據(jù)集合的運(yùn)算求,(CRA)∩B;
(2)若A∪C=R,則可以比較兩個(gè)集合的端點(diǎn),得出參數(shù)所滿足的不等式解出參數(shù)的取值范圍.
解答:解:(1)由題意,解得7>x≥3,故A={x∈R|3≤x<7},
B={x∈Z|2<x<10}═{x∈Z|3,4,5,6,7,8,9},
∴(CRA)∩B{7,8,9}
(2)∵A∪C=R,C={x∈R|x<a或x>a+1}
解得3≤a<6
實(shí)數(shù)a的取值范圍是3≤a<6
點(diǎn)評(píng):本題考查集合關(guān)系中的參數(shù)取值問(wèn)題,解題的關(guān)鍵是理解集合運(yùn)算的意義,能借助數(shù)軸等輔助工具正確判斷兩個(gè)集合的關(guān)系及相應(yīng)參數(shù)的范圍,本題中取參數(shù)的范圍是一個(gè)難點(diǎn),易因?yàn)殄e(cuò)判出錯(cuò),求解時(shí)要注意驗(yàn)證等號(hào)能否成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知函數(shù)f(x)=2x的反函數(shù)為f-1(x),則f-1(x)<0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3的切線的斜率等于1,則這樣的切線有( 。
A、1條B、2條C、3條D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)的最大值為α,求證:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2的圖象在P(a,-a2)(a≠0)處的切線與兩坐標(biāo)軸所圍成的三角形的面積為2,則實(shí)數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對(duì)稱,令h(x)=g(1-|x|)則關(guān)于函數(shù)h(x)有下列命題:
①h(x)為圖象關(guān)于y軸對(duì)稱;
②h(x)是奇函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為
①④
①④
(注:將所有正確命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案