函數(shù)的最大值是   
【答案】分析:利用均值不等式:若a>0,b>0,則a+b≥2進(jìn)行求解.
解答:解:∵x>0,
∴y=-3x-
=-(3x+

=-2
當(dāng)且僅當(dāng)3x=,x>0,即x=時(shí),取等號(hào).
故答案為:-2
點(diǎn)評(píng):本題考查均值不等式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行符號(hào)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+(a2+1)x在x=1處的導(dǎo)數(shù)值為1,則該函數(shù)的最大值是(  )
A、
25
16
B、
25
8
C、
25
4
D、
25
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、已知函數(shù)y=ax3-15x2+36x-24,x∈[0,4]在x=3處有極值,則函數(shù)的最大值是
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤m
,如果目標(biāo)函數(shù)z=x-y的最小值是-1,那么此目標(biāo)函數(shù)的最大值是( 。
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=
(x-1)2   (x≥0)
2x             (x<0)
,若x∈〔0,m+1〕時(shí),函數(shù)的最大值是f(m+1),則m的值取范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+(a2+1)x在x=1處的導(dǎo)數(shù)值為1,則該函數(shù)的最大值是
25
8
25
8

查看答案和解析>>

同步練習(xí)冊(cè)答案