①若2≤x≤3,6≤y≤9,求
3x
2y
的范圍;
②解不等式x>
x+3
x-1
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:①由題意得:
1
9
1
y
1
6
2≤x≤3
2
9
x
y
1
2
,從而求出
3x
2y
的范圍,②將不等式轉(zhuǎn)化為
(x-3)(x+1)
x-1
>0,解出即可.
解答: 解:①由題意得:
1
9
1
y
1
6
2≤x≤3
2
9
x
y
1
2
,
1
3
3x
2y
3
4

②∵x>
x+3
x-1
,
∴x-
x+3
x-1
>0,
(x-3)(x+1)
x-1
>0,
∴-1<x<1,或x>3,
∴不等式的解集是{x|-1<x<1或x>3}.
點(diǎn)評(píng):本題考查了不等式的解法,不等式的恰當(dāng)變形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
b
=(m,sin2x),
c
=(cos2x,n),x∈R,f(x)=
b
c
,若函數(shù)f(x)的圖象經(jīng)過點(diǎn)(0,1)和(
π
4
,1).
(1)求m、n的值;
(2)求f(x)的最小正周期,并求f(x)在x∈[0,
π
4
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是平行四邊形,∠DAB=45°,AA1=AB=2,AD=2
2
,點(diǎn)E是 C1D1的中點(diǎn),點(diǎn)F在B1C1上且B1F=2FC1
(Ⅰ)證明:AC1⊥平面EFC;
(Ⅱ)求銳二面角A-FC-E平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an}的首項(xiàng)a1=1,且第二項(xiàng)、第五項(xiàng)、第十四項(xiàng)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,an=bn+1-bn,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),a1,a2,a5構(gòu)成公比不等于1的等比數(shù)列.記bn=
1
anan+1
(n∈N*).
(Ⅰ)求c的值;
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rk≥2k成立?若存在,找出一個(gè)正整數(shù)k;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在給定的坐標(biāo)系中畫出函數(shù)y=2|x-1|的圖象,并指出其值域和單調(diào)區(qū)間
(2)函數(shù)f(x)=loga(x2-x+2),若f(x)>loga4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=2,AB=4,E為AB的中點(diǎn).分別以DA、DC、DD1所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz.
(Ⅰ)求點(diǎn)E、B1的坐標(biāo);
(Ⅱ)求證:D1E⊥CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,BA1⊥AC1,點(diǎn)A1在底面ABC上的射影恰為AC的中點(diǎn)D.
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄A過定點(diǎn)F(0,2),且與定直線L:y=-2相切.求動(dòng)圓圓心的軌跡C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案