精英家教網 > 高中數學 > 題目詳情
在數列{an}中,a1=3,且對任意大于1的正整數n,點(
an
an-1
)在直線2x-2y-
3
=0上,則an=( 。
分析:因為(
an
an-1
)在直線2x-2y-
3
=0上,所以2
an
-2
an-1
-
3
=0
,所以數列{
an
}是等差數列,通過數列{
an
}的通項公式,求出an
解答:解:因為(
an
,
an-1
)在直線2x-2y-
3
=0上,
所以2
an
-2
an-1
-
3
=0

整理得
an
-
an-1
=
3
2

所以數列{
an
}是等差數列,公差為
3
2
首項為
a1
=
3

所以數列{
an
}的通項公式為
an
=
3
+(n-1)×
3
2
=
3
(n+1)
2

所以an=
3
4
(n+1)2

故選D
點評:本題考查數列遞推公式與通項公式,考查轉化構造,運算求解能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),則數列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)設數列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a1=a,前n項和Sn構成公比為q的等比數列,________________.

(先在橫線上填上一個結論,然后再解答)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省汕尾市陸豐市碣石中學高三(上)第四次月考數學試卷(理科)(解析版) 題型:解答題

在數列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)設數列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案