已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
(1)因?yàn)楹瘮?shù)為偶函數(shù),故圖象關(guān)于y軸對(duì)稱,補(bǔ)出完整函數(shù)圖象如有圖:
所以f(x)的遞增區(qū)間是(-1,0),(1,+∞).
(2)設(shè)x>0,則-x<0,所以f(-x)=x2-2x,因?yàn)閒(x)是定義在R上的偶函數(shù),所以f(-x)=f(x),所以x>0時(shí),f(x)=x2-2x,
故f(x)的解析式為f(x)=
x2+2x,x≤0
x2-2x,x>0

值域?yàn)閧y|y≥-1}
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2+2x+c(a≠0)的圖象與y軸交于點(diǎn)(0,1),且滿足f(-2+x)=f(-2-x)(x∈R)
(Ⅰ)求該二次函數(shù)的解析式及函數(shù)的零點(diǎn).
(Ⅱ)已知函數(shù)在(t-1,+∞)上為增函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)f(x)=x2+(b-
2-a2
)x+(a+b)2的圖象關(guān)于y軸對(duì)稱,則此函數(shù)的圖象與y軸交點(diǎn)的縱坐標(biāo)的最大值為( 。
A.1B.
2
C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-2ax+3,x∈[0,2].
①當(dāng)a≥2時(shí),f(x)在[0,2]上的最小值為-13,求a的值;
②求f(x)在[0,2]上的最小值g(a);
③求②中g(shù)(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax-4,a∈R.
(1)若f(x)為偶函數(shù),求a的值;
(2)若f(x)在[1,+∞)上為增函數(shù),求a的取值范圍;
(3)f(x)在[1,2]內(nèi)的最小值為g(a),求g(a)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x2-2(a-3)x+3在區(qū)間(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)y=4x-3•2x+3,當(dāng)其值域?yàn)閇1,7]時(shí),x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=(k-4)x2+kx
(k∈R)
,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)證明:當(dāng)an∈(0,
1
2
)
時(shí),數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
(3)已知a1=
1
3
,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,則(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案