已知:橢圓C:=1(a>b>0)的左、右焦點(diǎn)為F1、F2,e=,過F1的直線l交橢圓C于A、B兩點(diǎn),|AF2|、|AB|、|BF2|成等差數(shù)列,且|AB|=4。

(I)求橢圓C的方程;

(II)M、N是橢畫C上的兩點(diǎn),若線段MN被直線x=1平分,證明:線段MN的中垂線過定點(diǎn)。

 

【答案】

 

解:(Ⅰ)∵、、成等差數(shù)列,

         ∴.                                      ………2分

,……5分

,又,所以,

所求的橢圓方程為:.                               ………7分

(Ⅱ)設(shè),,

由題意知:.                          ………9分

兩式相減得:,

,

所以,            ………11分

易證,此直線經(jīng)過定點(diǎn).                                   ………13分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方向向量為的直線過橢圓C:=1(a>b>0)的焦點(diǎn)以及點(diǎn)(0,),橢圓C的中心關(guān)于直線的對稱點(diǎn)在橢圓C的右準(zhǔn)線上。

⑴求橢圓C的方程。

⑵過點(diǎn)E(-2,0)的直線交橢圓C于點(diǎn)M、N,且滿足,(O為坐標(biāo)原點(diǎn)),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三模擬考試(二)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

    已知過橢圓C:=1(a>b>0)右焦點(diǎn)F且斜率為1的直線交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn);又函數(shù)圖象的一條對稱軸的方程是.

   (1)求橢圓C的離心率e與直線AB的方程;

   (2)對于任意一點(diǎn)M∈C,試證:總存在角θ(θ∈R)使等式+成立.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)已知直線x-2y+2=0經(jīng)過橢圓C:=1(>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方

的動點(diǎn),直線AS、BS與直線l:x=分別交于M、N兩點(diǎn).

(1)求橢圓C的方程;                     

(2)求線段MN的長度的最小值;

(3)當(dāng)線段MN的長度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:橢圓C:=1(a>b>0)的左、右焦點(diǎn)為F1、F2,e=,過F1的直線l交橢圓C于A、B兩點(diǎn),|AF2|、|AB|、|BF2|成等差數(shù)列,且|AB|=4。

(I)求橢圓C的方程;

(II)M、N是橢畫C上的兩點(diǎn),若線段MN被直線x=1平分, 證明:線段MN的中垂線過定點(diǎn)。

查看答案和解析>>

同步練習(xí)冊答案