3.對(duì)于函數(shù)y=f(x),定義域?yàn)镈=[-2,2],以下命題正確的是(只要求寫出命題的序號(hào))①③④
①若函數(shù)y=f(x)在D上具有單調(diào)性,且f(0)>f(1),則y=f(x)是D上的遞減函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f(x)是D上的遞減函數(shù),對(duì)任意x∈D,使得f(x)-m≥0恒成立,則必須m≤f(2);
④若f(x)是D上的遞增函數(shù),存在x0∈D,使得f(x0)-m≥0成立,則必須m≤f(2).

分析 分別根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷和轉(zhuǎn)化即可.

解答 解:①若函數(shù)y=f(x)在D上具有單調(diào)性,且f(0)>f(1),則y=f(x)是D上的遞減函數(shù),正確;
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù)錯(cuò)誤;如圖滿足條件.,但函數(shù)不具備單調(diào)性.
③若f(x)是D上的遞減函數(shù),則函數(shù)的最小值為f(2),對(duì)任意x∈D,使得f(x)-m≥0恒成立,則m≤f(x),此時(shí)必須m≤f(2);正確
④若f(x)是D上的遞增函數(shù),則f(-2)≤f(x)≤f(2),若存在x0∈D,使得f(x0)-m≥0成立,則則m≤f(x),則必須m≤f(2).正確,
故答案為:①③④.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及函數(shù)單調(diào)性的判斷和應(yīng)用,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(1+i)z=2-i,則z=( 。
A.-$\frac{1}{2}$-$\frac{3}{2}$iB.$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}+\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}滿足a1=2,a4=4(a3-a2),數(shù)列{bn}滿足bn=-1+2log2an
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$y=sin(x-\frac{π}{4})cos(x+\frac{π}{4})+\frac{1}{2}$是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知經(jīng)過A(2,1),B(1,m)兩點(diǎn)的直線的傾斜角為銳角,則實(shí)數(shù)m的取值范圍是(  )
A.m<1B.m>-1C.-1<m<1D.m>1,或m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m∈R,若$\frac{1+mi}{1+i}$為實(shí)數(shù),則m的值為( 。
A.-1B.$-\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平行四邊形ABCD,O是平行四邊形ABCD所在平面內(nèi)任意一點(diǎn),$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則向量$\overrightarrow{OD}$等于( 。
A.$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$B.$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$C.$\overrightarrow a$-$\overrightarrow b$+$\overrightarrow c$D.$\overrightarrow a$-$\overrightarrow b$-$\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x|sinx+a|+b(a,b∈R)是奇函數(shù)的充要條件是(  )
A.ab=0B.a+b=0C.a=bD.a2+b2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式2${\;}^{{x}^{2}-x}$<4的解集為( 。
A.(1,2)B.(-2,-1)C.(-1,2)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案