設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(-1)=0,則不等式f(x)•g(x)>0的解集是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:構(gòu)造函數(shù)m(x)=f(x)•g(x),根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系,判斷函數(shù)m(x)的單調(diào)性,結(jié)合函數(shù)的奇偶性的性質(zhì)即可得到結(jié)論.
解答: 解:設(shè)m(x)=f(x)•g(x),
∵x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,
即[f(x)g(x)]′>0
故m(x)在x<0時(shí)遞增,
∵f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),
∴m(x)=f(x)g(x)是R上的奇函數(shù),
∴m(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
即m(x)在x>0時(shí)也是增函數(shù).
∵g(-1)=0,∴g(1)=0,
∴m(-1)=0且m(1)=0,則函數(shù)m(x)對(duì)應(yīng)的草圖為
則m(x)>0的解集為:x>1或-1<x<0.
故不等式的解集為{x|x>1或-1<x<0},
故答案為:{x|x>1或-1<x<0}
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算,不等式的解法等,根據(jù)導(dǎo)數(shù)的正負(fù)可以確定函數(shù)的單調(diào)性,利用數(shù)形結(jié)合的思想進(jìn)行解題.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,則數(shù)列的第k項(xiàng)為( 。
A、ak+ak+1+…+a2k
B、ak-1+ak+…+a2k-1
C、ak-1+ak+…+a2k
D、ak-1+ak+…+a2k-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=(
1
2
)
x2-2x+2
(0≤x≤3)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=2py(p>0)上縱坐標(biāo)為2的點(diǎn)到焦點(diǎn)的距離為3.
(1)求p的值;
(2)若A,B兩點(diǎn)在拋物線上,滿足
AM
+
BM
=
0
,其中M(2,2).則拋物線上是否存在異于A,B的點(diǎn)C,使得經(jīng)過A、B、C三點(diǎn)的圓和拋物線在點(diǎn)C處有相同的切線?若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,∠ABC=∠BCD=∠CDA=90°,設(shè)頂點(diǎn)A在底面BCD上的射影為E.
(1)求證:CD⊥面ADE
(2)求證:BC=DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,向量
a
=(
Sn
,1),
b
=(an+1,2)(n∈N*)滿足
a
b

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=
an
an+t
(t∈N*),若b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,求t和m的值;
(3)如果等比數(shù)列{cn}滿足c1=a1,公比q滿足0<q<
1
2
,且對(duì)任意正整數(shù)k,ck-(ck+1+ck+2)仍是該數(shù)列中的某一項(xiàng),求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)k為整數(shù),化簡(jiǎn)
sin(kπ-α)cos[(k-1)π-α]
sin[(k+1)π+α]cos(kπ+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓C的方程為:
x=1+cosθ
y=1+sinθ
(θ為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為
 
.(極角范圍為[0,2π))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={x∈N+|x<6},A={1,3},B={3,5}.
(1)求∁UA,∁UB;
(2)求A∪B,A∩B;
(3)求∁U(A∪B),(∁UA)∩(∁UB).

查看答案和解析>>

同步練習(xí)冊(cè)答案