已知sinα=
3
5
,α∈(0,
π
2
),cosβ=-
12
13
,β∈(
π
2
,π).求sin(α+β)的值
 
..
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:先根據(jù)sinα設(shè)cosβ的值求得cosα和sinβ的值,進而根據(jù)兩角和公式把sin(α+β)代入即可.
解答: 解:∵α∈(0,
π
2
),β∈(
π
2
,π).
∴cosα=
1-sin2α
=
4
5
,sinβ=
1-cos2β
=
5
13
,
∴sin(α+β)=sinαcosβ+cosαsinβ=
3
5
×(-
12
13
)+
4
5
×
5
13
=-
16
65
,
故答案為:-
16
65
點評:本題主要考查了兩角和與差的正弦函數(shù)公式的運用.考查了學生基礎(chǔ)知識的掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(a+1)x+a,
(1)當a=2時,求關(guān)于x的不等式f(x)>0的解集;
(2)求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正數(shù)m、n滿足m+n=2,則mn的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2+bx+3>0的解集為{x|-1<x<3},則不等式3x2+bx+a<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓ρ=2cosθ在點M(2,0)處的切線的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)α∈(π,
2
),且tanα=
3
4
,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的命題有
 

(1)若m∥α,n∥β且α∥β,則m∥n
(2)若m?α,n?α,m∥β,n∥β,則α∥β
(3)已知直線l與平面α垂直,直線m?α,則直線l與直線m垂直
(4)若直線l1與l2垂直,則有k1k2=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用秦九韶算法求多項式f(x)=5x6-3x5+3.6x4-7.2x3-10.1x2+7x-3.5,當x=3.7的值,其中乘法的運算次數(shù)與加法的運算次數(shù)之和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面幾種推理是合情推理的是( 。
(1)由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
(2)由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°,歸納出所有三角形的內(nèi)角和是180°;
(3)教室內(nèi)有一把椅子壞了,則該教室內(nèi)的所有椅子都壞了;
(4)三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形內(nèi)角和是(n-2)•180°.
A、(1)(2)
B、(1)(3)(4)
C、(1)(2)(4)
D、(2)(4)

查看答案和解析>>

同步練習冊答案