【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù));在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l:y=kx(x≥0)分別交C1 , C2于A,B兩點(A,B異于原點).當(dāng) 時,求|OA||OB|的取值范圍.
【答案】解:(Ⅰ)由題意得,由 可得(x﹣1)2+y2=cos2α+sin2α, 即C1的普通方程為(x﹣1)2+y2=1.
方程ρcos2θ=sinθ可化為ρ2cos2θ=ρsinθ…(*),
將 代入方程(*),可得x2=y.
(Ⅱ)聯(lián)立方程 得 .
聯(lián)立方程組 ,可得B(k,k2),
所以 .
又 ,所以
【解析】(Ⅰ)由題意得,由 ,利用平方關(guān)系可得C1的普通方程為(x﹣1)2+y2=1.方程ρcos2θ=sinθ可化為ρ2cos2θ=ρsinθ,將 代入方程之間坐標(biāo)方程.(Ⅱ)聯(lián)立方程 ,可得A坐標(biāo).聯(lián)立方程組 ,可得B,進而得出|OA||OB|的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)是定義在 R上的偶函數(shù),當(dāng) x≥0 時,f(x)=x2+ax+b 的部分圖象如圖所示:
(1)求 f(x)的解析式;
(2)在網(wǎng)格上將 f(x)的圖象補充完整,并根據(jù) f(x)圖象寫出不等式 f(x)≥1的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量記為1,則x天后的存留量;若在t(t>4)天時進行第一次復(fù)習(xí),則此時知識存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)時間忽略不計),其后存留量y2隨時間變化的曲線恰為直線的一部分,其斜率為(a<0),存留量隨時間變化的曲線如圖所示.當(dāng)進行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時,則稱此時刻為“二次復(fù)習(xí)最佳時機點”.
(1)若a=-1,t=5求“二次復(fù)習(xí)最佳時機點”;
(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時機點”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點為F,過F的直線l交C于A,B兩點,交x軸于點D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD , 求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D為三角形ABC邊BC上一點, =3 ,En(n∈N*)為AC邊上的一列點,滿足 = an+1 ﹣(3an+2) ,其中實數(shù)列{an}中,an>0,a1=1,則{an}的通項公式為( )
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com