【題目】如圖,已知點D為三角形ABC邊BC上一點, =3 ,En(n∈N*)為AC邊上的一列點,滿足 = an+1 ﹣(3an+2) ,其中實數(shù)列{an}中,an>0,a1=1,則{an}的通項公式為(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

【答案】D
【解析】解:∵ = an+1 ﹣(3an+2) , = = , = , ∴(﹣ an+1+3an+3) = +( an+
∵En(n∈N+)為邊AC的一列點,
∴﹣ an+1+3an+3=1+ an+ ,
化為:an+1=3an+2,即an+1+1=3(an+1),
∴數(shù)列{an+1}是等比數(shù)列,首項為2,公比為3.
∴an+1=2×3n﹣1 , 即an=2×3n﹣1﹣1,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù));在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l:y=kx(x≥0)分別交C1 , C2于A,B兩點(A,B異于原點).當(dāng) 時,求|OA||OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng),.

(1)求函數(shù)的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運(yùn)動是否與性別有關(guān),某體育臺隨機(jī)抽取100名觀眾進(jìn)行統(tǒng)計,得到如下列聯(lián)表.

(1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜愛足球運(yùn)動與性別有關(guān)?

(2)在不喜愛足球運(yùn)動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人參加一臺訪談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某零售店近5個月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;

(3)當(dāng)銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).

[參考公式:]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司按現(xiàn)有能力,每月收入為70萬元,公司分析部門測算,若不進(jìn)行改革,入世后因競爭加劇收入將逐月減少.分析測算得入世第一個月收入將減少3萬元,以后逐月多減少2萬元,如果進(jìn)行改革,即投入技術(shù)改造300萬元,且入世后每月再投入1萬元進(jìn)行員工培訓(xùn),則測算得自入世后第一個月起累計收入與時間(以月為單位)的關(guān)系為,且入世第一個月時收入將為90萬元,第二個月時累計收入為170萬元,問入世后經(jīng)過幾個月,該公司改革后的累計純收入高于不改革時的累計純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1(a>b>0)的離心率為 ,過右焦點F2(c,0)垂直于x軸的直線與橢圓交于A,B兩點且|AB|= ,又過左焦點F1(﹣c,0)任作直線l交橢圓于點M
(1)求橢圓C的方程
(2)橢圓C上兩點A,B關(guān)于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是拋物線C:y2=2px(p>0)上的點,F(xiàn)是拋物線C的焦點,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,則拋物線C的方程為(
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點,∠ADB是二面角A﹣CC1﹣B的平面角,求直線AC1與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案