【題目】樹立和踐行綠水青山就是金山銀山,堅持人與自然和諧共生的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關于生態(tài)文明建設進展情況的調(diào)查,現(xiàn)從參與調(diào)查的人群中隨機選出20人的樣本,并將這20人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示

1)求a的值.

2)根據(jù)頻率分布直方圖,估計參與調(diào)查人群的樣本數(shù)據(jù)的分位數(shù)(保留兩位小數(shù)).

3)若從年齡在的人中隨機抽取兩位,求兩人恰有一人的年齡在內(nèi)的概率.

【答案】1;(242.14;(3.

【解析】

1)根據(jù)頻率分布直方圖的性質(zhì),由求解.

2)根據(jù)頻率分布直方圖得到的頻率為的頻率為,再由分位數(shù)定義求解.

3)根據(jù)頻率分布直方圖,先得到20人中,年齡在中的人數(shù),然后按照古典概型,先求得從年齡在5人中隨機抽取兩位的基本事件的總數(shù),再得到兩人恰有一人的年齡在在內(nèi)的基本事件數(shù),代入公式求解.

1)由頻率分布直方圖得:

解得.

2)由頻率分布直方圖得的頻率為,

的頻率為

所以估計參與調(diào)查人群的樣本數(shù)據(jù)的分位數(shù)為.

320人中,年齡在中的有人,記為A,B,

年齡在中的有人記為a,b,c,

從年齡在5人中隨機抽取兩位,基本事件有:,共10種,

兩人恰有一人的年齡在在內(nèi)的基本事件有:,共6種,

所以兩人恰有一人的年齡在內(nèi)的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

(1)求三棱柱的表面積;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王在某社交網(wǎng) 絡的朋友圈中,向在線的甲、乙、丙隨機發(fā)放紅包,每次發(fā)放1個.

(1)若小王發(fā)放5元的紅包2個,求甲恰得1個的概率;

(2)若小王發(fā)放3個紅包,其中5元的2個,10元的1個,記乙所得紅包的總錢數(shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在以下命題中,不正確的個數(shù)為(  )

,b共線的充要條件;②若,則存在唯一的實數(shù)λ,使λ;③對空間任意一點O和不共線的三點A,BC,若22,則P,AB,C四點共面;④若{,,}為空間的一個基底,則{,,}構(gòu)成空間的另一個基底;⑤ |(·|||·||·||.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 所示,一條直角走廊寬為,

1)若位于水平地面上的一根鐵棒在此直角走廊內(nèi),且,試求鐵棒的長;

2)若一根鐵棒能水平地通過此直角走廊,求此鐵棒的最大長度;

3)現(xiàn)有一輛轉(zhuǎn)動靈活的平板車,其平板面是矩形,它的寬如圖2.平板車若想順利通過直角走廊,其長度不能超過多少米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ln(x1) (aR)

(1)a1時,求函數(shù)f(x)在點(0,f(0))處的切線方程;

(2)討論函數(shù)f(x)的極值;

(3)求證:ln(n1)> (nN*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汕尾市基礎教育處為調(diào)查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調(diào)查,現(xiàn)將日均自學時間小于1小時的學生稱為“自學不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學不足”的概率為

非自學不足

自學不足

合計

配有智能手機

30

沒有智能手機

10

合計

請完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“自學不足”與“配有智能手機”有關?

附表及公式: ,其中

查看答案和解析>>

同步練習冊答案