分析 此題考查的是函數(shù)與方程的綜合應(yīng)用類問題.在解答時,先結(jié)合存在性問題的特點先假設(shè)存在a符合題意,然后將問題轉(zhuǎn)化為函數(shù)零點存在性的問題結(jié)合二次函數(shù)的特點即可獲得問題的解答,注意驗證.
解答 解:∵△=(3a-2)2-4(a-1)=9a2-16a+8>0,∴函數(shù)f(x)必有兩個不相等的零點.
又函數(shù)f(x)的圖象在區(qū)間(-1,3)上與x軸有且只有一個交點,
∴由零點存在性定理,可得f(-1)?f(3)≤0,即(2-2a)?(10a+2)≤0,解得a≤$-\frac{1}{5}$或a≥1.
因此存在實數(shù)$a∈(-∞,-\frac{1}{5}]∪[1,+∞)$滿足題設(shè)條件.
點評 此題考查的是函數(shù)與方程的綜合應(yīng)用類問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)與方程的思想、零點存在性知識以及結(jié)果驗證的技巧.值得同學(xué)們體會反思.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{23}{25}$ | B. | $-\frac{2}{25}$ | C. | $-\frac{23}{25}$ | D. | $\frac{2}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com