【題目】已知是單調減函數,若將方程
與
的解分別稱為函數
的不動點與穩(wěn)定點.則“
是
的不動點”是“
是
的穩(wěn)定點”的 ( )
A.充要條件 B.充分不必要條件
C.必要不充分條件 D.既不充分也不必要條件
【答案】B
【解析】欲判斷”x是f(x)的不動點”是“x是f(x)的穩(wěn)定點”的什么條件,只須從兩個方面考慮:一方面:若x是f(x)的不動點,看能不能推出“x是f(x)的穩(wěn)定點“;另一方面:”x是f(x)的穩(wěn)定點“能不能推出“x是f(x)的不動點“.
解:一方面:若x是f(x)的不動點,
則f(x)=x,即函數y=f(x)與直線y=x的交點的橫坐標為x,
因為原函數與反函數的圖象一定要關于直線y=x對稱,
故反函數的圖象一定要過函數y=f(x)與直線y=x的橫坐標為x交點,
即f(x)=f-1(x)的解是x,
故”x是f(x)的不動點“x是f(x)的穩(wěn)定點“;
另一方面:x是f(x)的穩(wěn)定點,
即f(x)=f-1(x),即函數y=f(x)與y=f-1(x)的交點的橫坐標為x,
因為原函數與反函數的圖象的交點不一定在直線y=x上,
故原函數的圖象不一定要過函數y=f(x)與反函數的圖象的交點,
即x不一定是方程f(x)=f-1(x)的解
故”x是f(x)的穩(wěn)定點“不能”x是f(x)的不動點“
則x“是f(x)的不動點”是“x是f(x)的穩(wěn)定點”的“充分不必要條件.
故選B.
科目:高中數學 來源: 題型:
【題目】一盒中放有的黑球和白球,其中黑球4個,白球5個.
(1)從盒中同時摸出兩個球,求兩球顏色恰好相同的概率.
(2)從盒中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.
(3)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時停止摸球的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】東亞運動會將于2013年10月6日在天津舉行.為了搞好接待工作,組委會打算學習北京奧運會招募大量志愿者的經驗,在某學院招募了16名男志愿者和14名女志愿者,調查發(fā)現,男女志愿者中分別有10人和6人喜愛運動,其余人不喜歡運動.
(1)根據以上數據完成以下2×2列聯表:
喜愛運動 | 不喜愛運動 | 總計 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
(2)根據列聯表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關?
(3)如果從喜歡運動的女志愿者中(其中恰有4人會外語),抽取2名負責翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數據:
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(
)的圖像關于坐標原點對稱。
(1)求的值,并求出函數
的零點;
(2)若函數在
內存在零點,求實數
的取值范圍;
(3)設,若不等式
在
上恒成立,求滿足條件的最小整數
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現如今,“網購”一詞不再新鮮,越來越多的人已經接受并喜歡了這種購物方式,但隨之也出現了商品質量不能保證與信譽不好等問題,因此,相關管理部門制定了針對商品質量與服務的評價體系,現從評價系統中選出成功交易200例,并對其評價進行統計:對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)依據題中的數據完成下表:
(2)通過計算說明,能否有99.9%的把握認為“商品好評與服務好評”有關;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)是奇函數,且滿足f(x)=f(x+3),f(-2)=-3.若數列{an}中,a1=-1,且前n項和Sn滿足=2×
+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機抽調了50人,他們年齡的頻數分布及支持“生育二胎”人數如下表:
(1)由以上統計數據填下面列聯表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異;
(2)若對年齡在的被調查人中各隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.且曲線
的左焦點
在直線
上.
(1)若直線與曲線
交于
兩點,求
的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com