已知等比數(shù)列的各項(xiàng)均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,
,求證:
(1);(2)參考解析
【解析】
試題分析:(1)又等比數(shù)列的各項(xiàng)均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
可得到兩個等式,解方程組可得結(jié)論.
(2)由(1)可得數(shù)列的通項(xiàng),即可計(jì)算,由于是一個復(fù)合的形式,所以先計(jì)算通項(xiàng)式.即可得到.又由于.即可得到結(jié)論.
設(shè)等比數(shù)列的公比為,依題意可得解得.所以通項(xiàng).
(2)由(1)得.所以.由.所以.所以即等價于證明..所以
考點(diǎn):1.等差數(shù)列、等比數(shù)列的性質(zhì).2.數(shù)列的求和.3.數(shù)列與不等式的知識交匯.4.歸納遞推的思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三5月適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)<0},則圖中陰影部分表示的集合為( )
A.{x|0<x≤1} B.{x|1≤x<2}
C.{x|x≥1} D.{x|x≤1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三第二學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知條件:,條件:直線與圓相切,則是的( )
A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三第二學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)為奇函數(shù),該函數(shù)的部分圖像如圖所示,、分別為最高點(diǎn)與最低點(diǎn),并且,則該函數(shù)圖象的一條對稱軸為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三第二學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
數(shù)列滿足,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
從6名教師中選4名開發(fā)A、B、C、D四門課程,要求每門課程有一名教師開發(fā),每名教師只開發(fā)一門課程,且這6名中甲、乙兩人不開發(fā)A課程,則不同的選擇方案共有( )
A.300種 B.240種 C.144種 D.96種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,四邊形是邊長為1的正方形,,點(diǎn)為內(nèi)(含邊界)的動點(diǎn),設(shè),則的最大值等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知數(shù)列滿足,且,設(shè)的項(xiàng)和為,則使得取得最大值的序號的值為( )
A.7 B.8 C.7或8 D.8或9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com