【題目】命題p:x∈N,x3<x2;命題q:a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x﹣1)的圖象過點(diǎn)(2,0),則下列命題是真命題的是(
A.p∧q
B.p∨¬q
C.¬p∧q
D.¬p∧q

【答案】C
【解析】解:設(shè)f(x)=x3﹣x2 , 則f′(x)=3x2﹣2x=x(3x﹣2),
當(dāng)x≥1時(shí),f′(x)>0,即當(dāng)x≥1時(shí),f(x)為增函數(shù),則f(x)≥f(1)=0,此時(shí)x3>x2 ,
當(dāng)x=0時(shí),x3=x2=0,故x∈N,x3≥x2;即命題p:x∈N,x3<x2;為假命題.
∵f(2)=loga(2﹣1)=loga1=0,∴函數(shù)f(x)=loga(x﹣1)的圖象過點(diǎn)(2,0),故命題q是真命題,
則¬p∧q為真命題,其余為假命題.
故選:C
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果X~N(μ,σ2),設(shè)m=P(X=a)(a∈R),則(
A.m=1
B.m=0
C.0≤m≤1
D.0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)為定義在(﹣∞,+∞)上的偶函數(shù),且f(x)在[0,+∞)上為增函數(shù),則f(﹣2),f(﹣π),f(3)的大小順序是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,a},B={1,2,3},則“a=3”是“AB“的(
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,x0(x0≠0)是f(x)的極大值點(diǎn),以下結(jié)論一定正確的是(
A.x∈R,f(x)≤f(x0
B.﹣x0是f(﹣x)的極小值點(diǎn)
C.﹣x0是﹣f(x)的極小值點(diǎn)
D.﹣x0是﹣f(﹣x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x﹣1)=x2+4x﹣5,則f(x)的表達(dá)式是(
A.f(x)=x2+6x
B.f(x)=x2+8x+7
C.f(x)=x2+2x﹣3
D.f(x)=x2+6x﹣10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設(shè)證 n=k+1時(shí)的情況,只需展開(  )
A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=2x+1,則當(dāng)x∈(﹣∞,0)時(shí),f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程2x+x=2的解所在區(qū)間是(
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案