在平面直角坐標(biāo)系中,不等式組
x≤a
|y-2|≤x
表示的平面區(qū)域的面積為4,則實(shí)數(shù)a的值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域的面積為4,建立條件關(guān)系即可求出a的值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域如圖:
由圖象可知a>0,
當(dāng)x=a時(shí),由|y-2|=a,
得y=2±a,
設(shè)A(a,2+a),C(a,2-a),則|AC|=2a,
則陰影部分的面積為S=
1
2
×2a×a=a2=4
,
解得a=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查二元一次不等式組表示平面區(qū)域,以及三角形面積的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F與雙曲線x2-
y2
4
=1
的右頂點(diǎn)重合.
(1)求拋物線的方程;
(2)若直線l經(jīng)過焦點(diǎn)F,且傾斜角為60°,與拋物線交于A、B兩點(diǎn),求:弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足約束條件:
x≥2
y≥x
2x+y≤12
,則z=x2+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
④命題“?x0∈R,ex0≤0”是真命題.其中正確的命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a2+a3=3,a18+a19+a20=87,則該數(shù)列前20項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①已知函數(shù)f(x)為連續(xù)可導(dǎo)函數(shù),若f(x)為奇函數(shù),則f(x)的導(dǎo)函數(shù)f′(x)為偶函數(shù);
②若函數(shù)f(x)=x2,則f′(2x)=[f(2x)]′;
③若函數(shù)g(x)=(x-1)(x-2)…(x-5)(x-6),則g′(6)=120;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值”的充要條件.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
π
3
0
sinxdx
,則(x+
1
ax
)6
的展開式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤2
y≤x
y≥0
,則z=3x+y的最大值是( 。
A、0B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:①2013年考入清華大學(xué)的性格外向的學(xué)生能組成一個(gè)集合;②空集∅⊆{0};③數(shù)集{2x,x2-x}中,實(shí)數(shù)x的取值范圍是{x|x≠0}.其中正確的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊答案