11.如圖,在矩形ABCD中,$AB=\frac{3}{2}$,BC=2,沿BD將矩形ABCD折疊,連結(jié)AC,所得三棱錐A-BCD的正視圖和俯視圖如圖所示,則三棱錐A-BCD的體積為( 。
A.$\frac{6}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{12}{5}$

分析 由題意可知平面ABD⊥平面BCD,棱錐的高為△ABD的斜邊BD上的高,得到體積.

解答 解:由正視圖和俯視圖可知平面ABD⊥平面BCD.棱錐的高為△ABD的斜邊BD上的高,所以體積為$\frac{1}{3}×\frac{1}{2}×\frac{3}{2}×2×\frac{\frac{3}{2}×2}{\sqrt{\frac{9}{4}+4}}=\frac{3}{5}$;
故選B.

點評 本題考查的知識點是由三視圖,求體積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x∈R,$\sqrt{y}$有意義且滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為( 。
A.$\sqrt{3}$B.1C.$\frac{\sqrt{3}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期為π,$(-\frac{π}{6},0)$是函數(shù)f(x)圖象的一個對稱中心,且曲線y=f(x)在該點處切線的斜率為-8.
(1)求a,b,ω的值;
(2)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值;
(3)若函數(shù)y=g(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{24}$對稱,判斷:曲線y=g(x)上是否存在與直線2x+19y+c=0(c為常數(shù))垂直的切線?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.焦點為F(0,5),漸進線方程為4x±3y=0的雙曲線的方程是( 。
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=1$C.$\frac{y^2}{36}-\frac{x^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“x=2”是“x2+2x-8=0”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l經(jīng)過兩點(1,$\sqrt{3}$),B(-2,2$\sqrt{3}$),則直線l的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“若x2<1,則-1<x<1”x∈R的逆否命題和真假性分別為( 。
A.若x2≥1,則x≥1或x≤-1;假命題B.若-1<x<1,則x2<1;假命題
C.若x>1或x<-1,則x2>1;真命題D.若x≥1或x≤-1,則x2≥1;真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤1的解集為{x|1≤x≤3},求實數(shù)a的值;
(2)若a=2,且存在實數(shù)x,使得m≥f(x)+f(x+5)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位長度,得到函數(shù)y=g(x)的圖象,則$\int_0^π{g(x)}dx$( 。
A.0B.πC.2D.1

查看答案和解析>>

同步練習(xí)冊答案