14.已知f(x)=3x+3-x,若f(a)=4,則f(2a)=(  )
A.4B.14C.16D.18

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì),進(jìn)行平方即可得到結(jié)論.

解答 解:∵f(x)=3x+3-x,
∴f(a)=3a+3-a=4,
平方得32a+2+3-2a=16,
即32a+3-2a=14.
即f(2a)=32a+3-2a=14.
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,利用指數(shù)冪的運(yùn)算性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年湖南益陽(yáng)市高二9月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和,若a1,a3是方程x2-5x+4=0的兩個(gè)根,則S6=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sinx,那么f(π-x)等于( 。
A.sinxB.cosxC.-sinxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}$an+1
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn
(Ⅲ)若存在n∈N*,使得an≤(n+1)λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若定義在區(qū)間[-2015,2015]上的函數(shù)f(x)滿足:對(duì)于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2015,且x>0時(shí),有f(x)<2015,f(x)的最大值、最小值分別為M,N,則M+N的值為( 。
A.2014B.2015C.4028D.4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{an}的通項(xiàng)為an=$\left\{\begin{array}{l}{{2}^{n}-1,n≤4}\\{-{n}^{2}+(a-1)n,n≥5}\end{array}\right.$,n∈N*,若a5是{an}中的最大值,則a取值范圍是[9,12].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若關(guān)于x的不等式組 $\left\{\begin{array}{l}{2x-3≥1}\\{x-2a≤3}\end{array}\right.$只有3個(gè)整數(shù)解,則a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=3x+x3-3在區(qū)間(0,1)內(nèi)的零點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)是R上的奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(2015)=$\frac{2015}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案