已知向量,,函數(shù)
(1)求函數(shù)g(x)的最小正周期;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(c)=3,c=1,,且a>b,求a,b的值.
【答案】分析:(1)根據(jù)向量的數(shù)量積表示出函數(shù)g(x)的解析式,然后根據(jù)余弦函數(shù)的二倍角公式降冪化為y=Acos(wx+ρ)的形式,根據(jù)T=可得答案.
(2)先根據(jù)向量的數(shù)量積表示出函數(shù)f(x)的解析式,然后化簡(jiǎn)為y=Asin(wx+ρ)的形式,將C代入函數(shù)f(x),根據(jù)f(c)=3求出C的值,再由余弦定理可求出a,b的值.
解答:解:(Ⅰ)g(x)==1+sin22x=1+=-cos4x+
∴函數(shù)g(x)的最小周期T=
(Ⅱ)f(x)==2
=cos2x+1+sin2x=2sin(2x+)+1
f(C)=2sin(2C+)+1=3∴sin(2C+)=1
∵C是三角形內(nèi)角∴2C+,∴2C+即:C=
∴cosC==即:a2+b2=7
將ab=2可得:解之得:a2=3或4
∴a=或2∴b=2或,∵a>b,∴a=2 b=
點(diǎn)評(píng):本題主要考查三角函數(shù)最小正周期的求法和余弦定理的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆廣東省實(shí)驗(yàn)中學(xué)、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)
已知向量,,函數(shù) 
(1)求的最小正周期;
(2)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

最大值;

中,設(shè)角,的對(duì)邊分別為,若,且?,求角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市育才中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,,函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間;
(3)說(shuō)明f(x)的圖象可以由g(x)=sinx的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

(Ⅰ)若方程上有解,求的取值范圍;

(Ⅱ)在中,分別是A,B,C所對(duì)的邊,當(dāng)(Ⅰ)中的取最大值且時(shí),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年南安一中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知向量,,函數(shù)

(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;

(2)若時(shí), 求的值域;

(3)求方程內(nèi)的所有實(shí)數(shù)根之和.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案