函數(shù)y=f(x)的圖象如圖所示,則函數(shù)f(x)有可能是(  )
A、xsin(
1
x2
B、xcos(
1
x2
C、x2sin(
1
x2
D、x2cos(
1
x2
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:函數(shù)的圖象關于原點對稱,得出函數(shù)y=f(x)為奇函數(shù),排除CD,
當x→+∞時,
1
x2
→0,故cos(
1
x2
)→1,所以f(x)=xcos(
1
x2
)→+∞,圖象應呈上升趨勢,可得到答案.
解答: 解:∵函數(shù)的圖象關于原點對稱,∴函數(shù)y=f(x)為奇函數(shù),排除CD,
當x→+∞時,
1
x2
→0,故cos(
1
x2
)→1,所以f(x)=xcos(
1
x2
)→+∞,圖象應呈上升趨勢,排除B,
故選:A
點評:本題主要考查函數(shù)的圖象,用排除法再結(jié)合函數(shù)的性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若兩個分類變量x和y的列聯(lián)表為:
y1y2合計
x1104555
x2203050
合計3075105
則x與y之間有關系的可能性為( 。
A、0.1%B、99.9%
C、97.5%D、0.25%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn和通項an滿足2Sn+an=1,數(shù)列{bn}中,b1=1,b2=
1
2
2
bn+1
-
1
bn
-
1
bn+2
=0(n∈N*).
(1)求數(shù)列{an},{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=
an
bn
,且Tn=c1+c2+c3+…+cn,求Tn?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從3名語文老師、4名數(shù)學老師和5名英語老師中選派5人組成一個支教小組,則語文、數(shù)學和英語老師都至少有1人的選派方法種數(shù)是( 。
A、590B、570
C、360D、210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5這5個數(shù)中任取兩數(shù),其中:①恰有一個是偶數(shù)和恰有一個是奇數(shù);②至少有一個是奇數(shù)和兩個都是奇數(shù);③至少有一個是奇數(shù)和兩個都是偶數(shù);④至少有一個是奇數(shù)和至少有一個是偶數(shù).  上述事件中,是對立事件的是( 。
A、①B、②④C、③D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:ρsin(θ-
π
4
)=4和圓C:ρ=2k•cos(θ+
π
4
)(k≠0),若直線l上的點到圓C上的點的最小距離等于2.
(1)求圓心C的直角坐標;
(2)求k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD把△BCD折起,使點C移到點P且點P在面ABD內(nèi)的射影O恰好落在AB上.
(1)求證:AP⊥BP;
(2)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
2an+1
(1+an)(1+an+1)
,數(shù)列{bn}的前n項和為Tn,求證:Tn
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(1+
1
sinα
)(1+
1
cosα
) (0<a<
π
2
)的最小值是
 

查看答案和解析>>

同步練習冊答案