七名同學站成一排照畢業(yè)紀念照,其中甲必須站在正中間,并且乙,丙兩位同學要站在一起,則不同的排法有( 。
A、240種B、192種
C、120種D、96種
考點:排列、組合的實際應用
專題:排列組合
分析:利用甲必須站正中間,先安排甲,甲的兩邊,每邊三人,不妨令乙丙在甲左邊,求出此種情況下的站法,再乘以2即可得到所有的站法總數(shù).
解答: 解:不妨令乙丙在甲左側(cè),先排乙丙兩人,有A22種站法,再取一人站左側(cè)有C41×A22種站法,余下三人站右側(cè),有A33種站法,
考慮到乙丙在右側(cè)的站法,故總的站法總數(shù)是2×A22×C41×A22×A33=192,
故選:B.
點評:本題考查排列、組合的實際應用,解題的關(guān)鍵是理解題中所研究的事件,并正確確定安排的先后順序,此類排列問題一般是誰最特殊先安排誰,俗稱特殊元素特殊位置優(yōu)先的原則.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=-x2+2
B、y=
1
x
C、y=2-x
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在復平面內(nèi),復數(shù)z1,z2對應的向量分別是
OA
,
OB
,則復數(shù)z1•z2對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等腰梯形ABCD,AB∥CD,DE⊥AB,CF⊥AB,AE=2,沿DE,CF將梯形折疊使A,B重合于A點(如圖),G為AC上一點,F(xiàn)G⊥平面ACE.

(Ⅰ)求證:AE⊥AF;
(Ⅱ)求DG與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為測量某塔的高度,在A,B兩點進行測量的數(shù)據(jù)如圖所示,求塔的高度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,曲線C1的參數(shù)方程為:
x=4cosφ
y=3sinφ
(φ為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ=2cosθ
(1)去曲線C1的直角坐標方程;
(2)已知點M是曲線C1上任意一點,點N是曲線C2上任意一點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足約束條件
y≥x
x+2y≤2
x≥-1
,則z=x-3y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

汽車以恒定的速率繞圓形廣場一周用時2min,每行駛半周,速度方向改變多少度?汽車每行駛10s,速度方向改變多少度?先作一個圓表示汽車運動的軌道,然后作出汽車在相隔10s后兩個位置速度矢量的示意圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前項和為Sn 且
1
Sn
=
1
n
-
1
n+1
 (n∈N*
(Ⅰ)求a1及數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{
an
2n+1
}的前n項和為Tn,求Tn

查看答案和解析>>

同步練習冊答案