已知函數(shù)f(x)是偶函數(shù),且在(0,+∞)上是減函數(shù),試判斷f(x)在(-∞,0)上是增函數(shù)還是減函數(shù),并加以證明.

答案:
解析:

  解:f(x)在(-∞,0)上是增函數(shù),證明如下:

  設(shè)任意的x1、x2∈(-∞,0),且x1<x2,即x1<x2<0,因為f(x)是偶函數(shù),所以f(-x1)=f(x1),f(-x2)=f(x2).因為x1<x2<0,則-x1>-x2>0,而f(x)在(0,+∞)上是減函數(shù),所以f(-x1)<f(-x2),即f(x1)<f(x2).由此可得f(x)在(-∞,0)上是增函數(shù).


提示:

先猜測結(jié)論,再運用函數(shù)的單調(diào)性、奇偶性定義加以證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1x

(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省師大附中2012屆高三10月月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)是定義域為R的不恒為0的函數(shù),且對任意的a,b∈R,滿足f(ab)=af(b)+bf(a).

(1)求f(0)、f(1)的值;

(2)判斷f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆吉林省松原市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù)f (x)是正比例函數(shù),函數(shù)g (x)是反比例函數(shù),且f(1)=1,g(1)=2,

(1)求函數(shù)f (x)和g(x);

(2)判斷函數(shù)f (x)+g(x)的奇偶性.

(3)求函數(shù)f (x)+g(x)在(0,]上的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案