【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實(shí)數(shù)a的值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營(yíng)狀況,調(diào)查了其下屬各分公司月銷售額和利潤(rùn),得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅雨 | 雅女 | 雅竹 | 雅茶 |
月銷售額x(萬(wàn)元) | 3 | 5 | 6 | 7 | 9 |
月利潤(rùn)y(萬(wàn)元) | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計(jì)中發(fā)現(xiàn)月銷售額x和月利潤(rùn)額y具有線性相關(guān)關(guān)系.
(Ⅰ)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤(rùn)y與月銷售額x之間的線性回歸方程;
(Ⅱ)若該總公司還有一個(gè)分公司“雅果”月銷售額為10萬(wàn)元,試求估計(jì)它的月利潤(rùn)額是多少?(參考公式: = , = ﹣ ,其中: =112, =200).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=2,f′(x)﹣f(x)>ex , 則使得f(x)>xex+2ex成立的x的取值范圍是( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(﹣∞,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×)
(1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn= ﹣ ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:﹣ ≤Tn<﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高一年級(jí)名學(xué)生在寒假里每天閱讀的平均時(shí)間(單位:小時(shí))情況,隨機(jī)抽取了名學(xué)生,記錄他們的閱讀平均時(shí)間,將數(shù)據(jù)分成組: , , , ,并整理得到如下的頻率分布直方圖:
()求樣本中閱讀的平均時(shí)間為內(nèi)的人數(shù).
()已知樣本中閱讀的平均時(shí)間在內(nèi)的學(xué)生有人,現(xiàn)從高一年級(jí)名學(xué)生中隨機(jī)抽取一人,估計(jì)其閱讀的平均時(shí)間在內(nèi)的概率.
()在樣本中,使用分層抽樣的方法,從閱讀的平均時(shí)間在內(nèi)的學(xué)生中抽取人,再?gòu)倪@人中隨機(jī)選取人參加閱讀展示,則選到的學(xué)生恰好閱讀的平均時(shí)間都在內(nèi)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,其左、右焦點(diǎn)為F1、F2 , 點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|= , = ,其中O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)如圖,過(guò)點(diǎn)S(0,﹣ )的動(dòng)直線l交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大。
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,D是BC邊的中點(diǎn),AE⊥AD,AE交CB的延長(zhǎng)線于E,則下面結(jié)論中正確的是( 。
A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com