【題目】設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點;
(2)設(shè),若對任意,有,求的取值范圍.
【答案】(1)詳見解析;(2).
【解析】
試題(Ⅰ)函數(shù)y=f(x)如果滿足:①函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,②f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點;方法:先利用零點的判定方法判斷存在性,再利用區(qū)間內(nèi)函數(shù)是單調(diào)的說明唯一性
(Ⅱ)先對任意,都有,說明最大值與最小值之差,然后在進行分類討論
試題解析:(Ⅰ)設(shè),當時,1分
,在區(qū)間內(nèi)存在零點 2分
又設(shè),,
即在區(qū)間內(nèi)單調(diào)遞增 2分
在區(qū)間內(nèi)存在唯一的零點 1分
(Ⅱ)當時,1分
對任意,都有等價于在上的最大值與最小值之差,1分 據(jù)此分類討論如下:
(1)、當,即時,,與題設(shè)矛盾; 1分
(2)、當,即時,恒成立; 1分
(3)當,即時,恒成立 1分
綜上可得,,的取值范圍為1分
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且在軸上的頂點分別為,.
(1)求橢圓的方程;
(2)若直線與軸交于點,點為直線上異于點的任一點,直線分別與橢圓交于點,試問直線能否通過橢圓的焦點?若能,求出的值,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知AB丄平面BCD,M、N分別是AC、AD的中點,BC 丄 CD.
(1)求證:MN//平面BCD;
(2)若AB=1,BC=,求直線AC與平面BCD所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市的電視發(fā)射搭CD建在市郊的一座小山上,如圖所示,小山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為50米.
(1)如果從點A觀測電視發(fā)射塔的視角∠CAD=,求這座電視發(fā)射塔的高度;
(2)點A在何位置時,角∠CAD最大.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學的投籃命中次數(shù), 乙組記錄中有一個數(shù)據(jù)模糊,無法確認, 在圖中以表示.
(Ⅰ)如果乙組同學投籃命中次數(shù)的平均數(shù)為, 求及乙組同學投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名, 記事件A:“兩名同學的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費用(千元)由如表的統(tǒng)計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com