5.根據(jù)國家最新人口發(fā)展戰(zhàn)略,一對夫婦可生育兩個(gè)孩子,為了解人們對放開生育二胎政策的意向,某機(jī)構(gòu)在A城市隨機(jī)調(diào)查了100位30到40歲已婚人群,得到情況如表:
意向合計(jì)
402060
不生202040
合計(jì)6040100
(Ⅰ)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由(請參考所附的公式及相關(guān)數(shù)據(jù));
(Ⅱ)從這60名男性中按對生育二胎政策的意向采取分層抽樣,抽取6名男性,從這6名男性中隨機(jī)選取兩名,求選到的兩名都愿意生育二胎的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828

分析 (Ⅰ)計(jì)算K2<3.841,可得結(jié)論.
(Ⅱ)抽取6名男性,4名愿意生二胎,2名不愿意生二胎,從這6名男性中隨機(jī)選取兩名,有${C}_{6}^{2}$=15種方法,選到的兩名都愿意生育二胎,有${C}_{4}^{2}$=6種方法,即可求出概率.

解答 解:(Ⅰ)由于K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100•(40•20-20•20)^{2}}{60•40•60•40}$=$\frac{25}{9}$<3.841,
故沒有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”.
(Ⅱ)抽取6名男性,4名愿意生二胎,2名不愿意生二胎,從這6名男性中隨機(jī)選取兩名,有${C}_{6}^{2}$=15種方法,選到的兩名都愿意生育二胎,有${C}_{4}^{2}$=6種方法,概率P=$\frac{6}{15}$=$\frac{2}{5}$.

點(diǎn)評 本題主要考查獨(dú)立性的檢驗(yàn),考查概率的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.體積為$\frac{4}{3}π$的球O放置在棱長為4的正方體ABCD-A1B1C1D1上,且與上表面A1B1C1D1相切,切點(diǎn)為該表面的中心,則四棱錐O-ABCD的外接球的半徑為$\frac{33}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,拋物線x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,1),則實(shí)數(shù)p的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則此幾何體的體積是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{2}^{x}+2,x≤1}\\{\frac{1}{2}x-\frac{1}{2},x>1}\end{array}\right.$,若存在實(shí)數(shù)x1<x2,使得f(x1)=f(x2),則x2f(x1)的取值范圍是(0,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.梯形ABCD中,$\overrightarrow{AB}$=λ$\overrightarrow{AD}$+μ$\overrightarrow{BC}$,則λ+μ=( 。
A.1B.-1C.0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)正三棱柱的主(正)視圖是長為2$\sqrt{3}$,寬為4的矩形,則它的外接球的表面積等于( 。
A.64πB.48πC.32πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長度,再向上平移1個(gè)單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在$[-\frac{π}{12},\frac{π}{3}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知正方體ABCD-A1B1C1D1棱長為1,E、F為線段B1D1的兩個(gè)動(dòng)點(diǎn),且EF=$\frac{\sqrt{2}}{2}$,給出下列四個(gè)命題:
①AC⊥BE;
②EF∥平面ABCD;
③點(diǎn)B到平面AEF的距離為定值;
④異面直線AE與BF所成的角為定值.
其中真命題的個(gè)數(shù)為(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè).

查看答案和解析>>

同步練習(xí)冊答案