【題目】一個(gè)幾何體的三視圖如圖所示,若該幾何體的外接球表面積為,則該幾何體的體積為( )

A. B. C. D.

【答案】B

【解析】

先將幾何體還原得四棱錐P-ABCD,做底面中心的垂線,通過(guò)列方程找到球心的位置,進(jìn)而再求四棱錐的高,從而可得體積.

由三視圖可知該幾何體為四棱錐P-ABCD,其中ABCD是邊長(zhǎng)為2的正方形,側(cè)面PBC垂直于底面ABCD,為等腰三角形.

設(shè)BC的中點(diǎn)為F,四邊形ABCD的中心為點(diǎn)H,連接PF,FH,過(guò)點(diǎn)H作平面ABCD的垂線,則球心在該直線上,即為點(diǎn)O,過(guò)點(diǎn)O于點(diǎn)E,連接OP.

設(shè)四棱錐P-ABCD的外接球半徑為R,由其表面積為,解得.

設(shè)OH=x,則在直角三角形OHB中,有,解得.

在直角三角形POE,所以,解得.(負(fù)值已舍去

所以PF=PE+EF=2.

所以四棱錐P-ABCD的體積.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),當(dāng)時(shí),函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于的方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的最大值;

2)如果函數(shù)在公共定義域D上,滿足,那么就稱伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)伴隨函數(shù),求實(shí)數(shù)的取值范圍;

3)若,正實(shí)數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列中,,,其中為常數(shù).

(1)成等比數(shù)列,求的值;

(2)是否存在,使得數(shù)列為等差數(shù)列?并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本市居民的生活成本,甲、乙、丙三名同學(xué)利用假期分別對(duì)三個(gè)社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為s1、s2s3,則它們的大小關(guān)系為__________.(用“>”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)是否存在正實(shí)數(shù),使得對(duì)任意,都有,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)當(dāng)時(shí), ,對(duì)恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知點(diǎn)D是AB上一點(diǎn),滿足,點(diǎn)E是邊CB上一點(diǎn),滿足

①當(dāng)λ=時(shí),求;

②是否存在非零實(shí)數(shù)λ,使得?若存在,求出的λ值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

1若展開(kāi)式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)

的系數(shù);

2若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案