【題目】已知函數(shù).
(1)當(dāng)任意取值時(shí),的圖象始終經(jīng)過一個(gè)定點(diǎn),若的圖象在該定點(diǎn)處取得極值,求的值;
(2)求證:函數(shù)有唯一零點(diǎn)的充分不必要條件是.
【答案】(1)
(2)證明見解析
【解析】
(1)根據(jù),得到定點(diǎn),然后求導(dǎo),根據(jù)的圖象在該定點(diǎn)處取得極值求解.
(2)分不必要性和充分性論證,證不必要性時(shí),根據(jù)(1)取論證. 證充分性時(shí),根據(jù),所以已經(jīng)有零點(diǎn)1,只需要證明函數(shù)再無其它零點(diǎn)即可,然后.根據(jù),分和兩種情況論證即可.
(1)由可得,,
所以的圖象始終經(jīng)過一個(gè)定點(diǎn),
因?yàn)?/span>.
因?yàn)?/span>的圖象在該定點(diǎn)處取得極值,所以,所以,
當(dāng)時(shí),,滿足:在左右側(cè)異號,
所以符合題意;
(2)不必要性:
當(dāng)時(shí),,
在上,,在上,,
所以在上遞增,在上遞減,
所以,
所以當(dāng)時(shí),函數(shù)有唯一零點(diǎn)1,
所以當(dāng)是函數(shù)有唯一零點(diǎn)的不必要條件;
充分性:
因?yàn)?/span>,所以已經(jīng)有零點(diǎn)1,下面只需要證明函數(shù)再無其它零點(diǎn)了.
因?yàn)?/span>且時(shí),,
所以在上無零點(diǎn),
因?yàn)?/span>,
當(dāng),且時(shí),,所以,
所以在遞增,所以當(dāng)時(shí),,
所以在時(shí)也無零點(diǎn),
所以時(shí),有唯一零點(diǎn)1,
所以是有唯一零點(diǎn)的充分條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長依次成等差數(shù)列,冬至、立春、春分日影長之和為31.5尺,前九個(gè)節(jié)氣日影長之和為85.5尺,則小滿日影長為( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a為常數(shù).
(1)討論函數(shù)的單調(diào)性:
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,已知,,,,三角形是邊長為2的正三角形,當(dāng)四棱錐的外接球的體積取得最小值時(shí),則以下判斷正確的是( )
A.四棱錐的體積取得最小值為,外接球的球心必在四棱錐內(nèi)
B.四棱錐的體積取得最小值為,外接球的球心可在四棱錐內(nèi)或外
C.四棱錐的體積為,外接球的球心必在四棱錐內(nèi)
D.四棱錐的體積為,外接球的球心可在四棱錐內(nèi)或外
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),C的準(zhǔn)線與E交于P,Q兩點(diǎn),且.
(1)求E的方程;
(2)過E的左頂點(diǎn)A作直線l交E于另一點(diǎn)B,且BO(O為坐標(biāo)原點(diǎn))的延長線交E于點(diǎn)M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com