若圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,則圓C的標(biāo)準(zhǔn)方程為( 。
分析:設(shè)圓心坐標(biāo)為C(a,b),由圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,知
|3a+4b-2|
9+16
=2
|a|=2
a<0
b>0
,由此能求出圓C的標(biāo)準(zhǔn)方程.
解答:解:設(shè)圓心坐標(biāo)為C(a,b),
∵圓C與y軸和直線3x+4y-2=0都相切,且圓心在第二象限,圓半徑為2,
|3a+4b-2|
9+16
=2
|a|=2
a<0
b>0
,
解得a=-2,b=
9
2
,
∴圓心為(-2,
9
2
),
故圓C的標(biāo)準(zhǔn)方程是(x+2)2+(y-
9
2
)2=4
,
故選D.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,是中檔題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意點(diǎn)到直線的距離公式和圓的基本性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過(guò)點(diǎn)(
2
,
6
2
)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過(guò)點(diǎn)(
2
,
6
2
)

(I) 求圓C和橢圓D的方程;
(Ⅱ) 設(shè)橢圓D與x軸負(fù)半軸的交點(diǎn)為P,若過(guò)點(diǎn)M的動(dòng)直線l與橢圓D交于A、B兩點(diǎn),∠ANM=∠BNP是否恒成立?給出你的判斷并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

如圖所示,已知圓Cy軸相切于點(diǎn)T(0,2),x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過(guò)點(diǎn),.

(1)求圓C和橢圓D的方程;

(2)若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于AB兩點(diǎn),求證:直線NA與直線NB的傾斜角互補(bǔ).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:數(shù)學(xué)公式的焦距等于2|ON|,且過(guò)點(diǎn)數(shù)學(xué)公式
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省濰坊市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:的焦距等于2|ON|,且過(guò)點(diǎn)
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

同步練習(xí)冊(cè)答案