【題目】《鄭州市城市生活垃圾分類管理辦法》已經(jīng)政府常務(wù)會(huì)議審議通過(guò),自2019121日起施行.垃圾分類是對(duì)垃圾收集處置傳統(tǒng)方式的改革,是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法.所謂垃圾其實(shí)都是資源,當(dāng)你放錯(cuò)了位置時(shí)它才是垃圾.某企業(yè)在市科研部門的支持下進(jìn)行研究,把廚余垃圾加工處理為一種可銷售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價(jià)為16元.

(Ⅰ)該企業(yè)每周加工處理量為多少噸時(shí),才能使每噸產(chǎn)品的平均加工處理成本最低?

(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤(rùn)的最大值;如果不獲利,則需要市政府至少補(bǔ)貼多少元才能使該企業(yè)不虧損?

【答案】(Ⅰ),(Ⅱ)故該企業(yè)不獲利,需要市政府每周至少補(bǔ)貼1125元,才能不虧損.

【解析】

(Ⅰ)由題意,周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似的表示為:,兩邊同時(shí)除以,然后利用基本不等式從而求出最值;

(2)設(shè)該單位每月獲利為,則,把值代入進(jìn)行化簡(jiǎn),然后運(yùn)用配方法進(jìn)行求解.

解:(Ⅰ)由題意可知,

每噸平均加工成本為:

當(dāng)且僅當(dāng)時(shí),才能使每噸的平均加工成本最低.

(Ⅱ)設(shè)該單位每月獲利為,則

時(shí),

故該企業(yè)不獲利,需要市政府每周至少補(bǔ)貼1125元,才能不虧損.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),證明;

(2)當(dāng)時(shí),對(duì)于兩個(gè)不相等的實(shí)數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖是源于其思想的一個(gè)程序框圖,若輸入,,則輸出的等于( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于、兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中平面平面,.

(Ⅰ)證明:;

(Ⅱ)若點(diǎn)E中點(diǎn),,,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,當(dāng),分別在軸,軸上滑動(dòng)時(shí),點(diǎn)的軌跡記為.

(1)求曲線的方程;

(2)設(shè)斜率為的直線交于兩點(diǎn),若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)若,求的取值范圍;

(2)若的圖像與軸圍成的封閉圖形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m是實(shí)數(shù),關(guān)于x的方程Ex2mx+2m+1)=0

1)若m2,求方程E在復(fù)數(shù)范圍內(nèi)的解;

2)若方程E有兩個(gè)虛數(shù)根x1,x2,且滿足|x1x2|2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),對(duì)任意,都有.

討論的單調(diào)性;

當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案