已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2014的值為(  )
A、4023B、4025
C、4027D、4029
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列與等比數(shù)列的通項公式即可得出.
解答: 解:∵a1、a2、a5成等比,∴
a
2
2
=a1a5
,
∴(1+d)2=1×(1+4d),d≠0.
解得d=2.
∴a2014=a1+2013d=1+2013×2=4027,
故選:C.
點評:本題考查了等差數(shù)列與等比數(shù)列的通項公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知映射f1:A→B,其中A=B=R,對應法則f1:x→y=x2-2x+2;若對實數(shù)k∈B,在集合A中不存在原象,則k
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
|lgx|,x>0
2|x|,x≤0
,則函數(shù)y=2f2(x)-3f(x)+1的零點的個數(shù)為( 。﹤.
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{an},a1=4,an+1=f(an),n=1,2,…,則a2012等于( 。
x 1 2 3 4 5
f(x) 5 4 3 1 2
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的流程圖,若輸出的結果是9,則判斷框中的橫線上可以填入的最大整數(shù)為( 。
A、17B、16C、15D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x
.若函數(shù)f(x)在x=1處取得極大值,則實數(shù)a的值為(  )
A、1B、0C、2D、0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設k∈R,則“k≠1”是“直線l:y=kx+
2
與圓x2+y2=1不相切”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,0),B(x0,y0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上兩點,滿足直線AB的斜率為-
3
4
,且線段AB被直線l:y=x平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是橢圓C上異于A,B的動點,若直線AP交M于點M,直線交l于點,試探究
OM
ON
是否為定值,并說明理由.

查看答案和解析>>

同步練習冊答案