已知全集U=R,A={x|x2-2x<0},B={x|log2x+1≥0},則A∩(CUB)=________.

(0,
分析:由題設(shè)條件先分別求出集合A和B,再由補(bǔ)集的運(yùn)算求出CUB,然后再求A∩CUB.
解答:A={x|x2-2x<0}=(0,2)
B={x|log2x+1≥0}=【,+∞)
∴CUB=(-∞,
∴A∩(CUB)=(0,
故答案為:(0,).
點(diǎn)評(píng):本題考查集合的交、并、補(bǔ)集的運(yùn)算,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意對(duì)數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-2≤x≤4},集合B={x|x≤1或x>5}
求(1)A∩B
  (2)?U(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-3<x≤6,x∈R},B={x|x2-5x-6<0,x∈R}.
求:
(1)A∪B;
(2)(?UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知全集U=R,A={x|x2-2x<0},B={x|log2x+1≥0},則A∩(?UB)=
(0,
1
2
(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|x≤1或x≥2},B={x|a<x<a+2}.
(1)若a=1,求(?UA)∩B;       
(2)若(?UA)∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案