已知sinx=sinθ+cosθ,cosx=sinθcosθ,則cos52x=(  )
分析:把已知的兩等式兩邊分別平方相加后,利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)后,即可得到sinθcosθ的方程,求出方程的解即可得到sinθcosθ的值,即為cosx的值,然后利用二倍角的余弦函數(shù)公式把所求的式子化簡(jiǎn)后,將cosx的值代入即可求出值.
解答:解:把sinx=sinθ+cosθ,cosx=sinθcosθ分別兩邊平方得:
sin2x=(sinθ+cosθ)2=1+2sinθcosθ,cos2x=(sinθcosθ)2,
則sin2x+cos2x=1=1+2sinθcosθ+(sinθcosθ)2,即sinθcosθ(sinθcosθ+2)=0,
因?yàn)閟inθcosθ≠-2,所以得到sinθcosθ=0,即cosx=0,
則cos52x=(2cos2x-1)5=-1.
故選C
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系及二倍角的余弦函數(shù)公式化簡(jiǎn)求值,是一道中檔題.本題的突破點(diǎn)是將已知的兩等式兩邊平方后相加.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinx+sinα=
13
,求關(guān)于x的函數(shù)y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinx=sinα+cosα,cosx=sinαcosα,則cos2x=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知sinx+sinα=
1
3
,求關(guān)于x的函數(shù)y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)南外國(guó)語(yǔ)學(xué)校高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知sinx+sinα=,求關(guān)于x的函數(shù)y=1+sinx+sin2α的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案