【題目】如圖,在四棱錐 中,側(cè)面 底面 ,側(cè)棱 ,底面 為直角梯形,其中 中點(diǎn).

(1)求證: 平面 ;
(2)求異面直線 所成角的余弦值;
(3)線段 上是否存在 ,使得它到平面 的距離為 ?若存在,求出 的值.

【答案】
(1)證明:在 中點(diǎn),所以 .
又側(cè)面 底面 ,平面 平面 平面 ,
所以 平面 .
(2)解:連接 ,

在直角梯形 中, ,有 ,所以四邊形 是平行四邊形,所以 .
由(1)知 為銳角,
所以 是異面直線 所成的角,
因?yàn)? ,在 中, ,所以 ,
中,因?yàn)? ,所以 ,
中, ,所以 ,
所以異面直線 所成的角的余弦值為 .
(3)解:假設(shè)存在點(diǎn) ,使得它到平面的距離為 .
設(shè) ,則 ,由(2)得 ,
中, ,
所以 ,
,所以存在點(diǎn) 滿(mǎn)足題意,此時(shí)
【解析】(1)由線面垂直的判定可知,只要證明直線PO垂直平面ABCD中兩條相交線即可證明。
(2)根據(jù)題意可知,將兩條異面直線PB、CD平移到同一個(gè)起點(diǎn)B,得到的銳角或直角就是所形成的角,再用余弦定理即可求出。
(3)根據(jù)V P D Q C = V Q P C D的性質(zhì),即可求出。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= [cos(2x+ )+4sinxcosx]+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數(shù)g(x)在區(qū)間[﹣ ]上的值域?yàn)閇﹣1.1],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 ,直線

(1)求證:對(duì)任意的 ,直線 與圓 恒有兩個(gè)交點(diǎn);
(2)求直線 被圓 截得的線段的最短長(zhǎng)度,及此時(shí)直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由數(shù)字0,1,2,3組成沒(méi)有重復(fù)數(shù)字的四位數(shù)有個(gè)(用數(shù)字作答)其中數(shù)字0,1相鄰的四位數(shù)有個(gè)(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:x+2y-2=0,試求:
(1)點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)坐標(biāo);
(2)直線 關(guān)于直線l對(duì)稱(chēng)的直線l2的方程;
(3)直線l關(guān)于點(diǎn)(1,1)對(duì)稱(chēng)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在這個(gè)正方體中,

平行;
是異面直線;
是異面直線;
是異面直線;
以上四個(gè)命題中,正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中有標(biāo)號(hào)分別為0,1,2,3的球各一個(gè),這些球除標(biāo)號(hào)外均相同.從盒中依次摸取兩個(gè)球(每次一球,摸出后不放回),記為一次游戲.規(guī)定:摸出的兩個(gè)球上的標(biāo)號(hào)之和等于5為一等獎(jiǎng),等于4為二等獎(jiǎng),等于其它為三等獎(jiǎng).
(1)求完成一次游戲獲三等獎(jiǎng)的概率;
(2)記完成一次游戲獲獎(jiǎng)的等級(jí)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一次考試結(jié)果的頻數(shù)分布直方圖,根據(jù)該圖可估計(jì),這次考試的平均分?jǐn)?shù)為.

查看答案和解析>>

同步練習(xí)冊(cè)答案