在△ABC中,若2cosBsinA=sinC,則△ABC的形狀一定是

[  ]

A.等腰直角三角形
C.等腰三角形
B.直角三角形
D.等邊三角形

答案:C
解析:

解析1:在△ABC中,ABC=180°.

C=180°-(AB),∴sinC=sin(AB)

∴可知條件可化為2sin Acos B=sin C=sin(AB)

sin(AB)=0.又-π<AB<π.

AB=0.∴A=B

∴△ABC為等腰三角形.

解析2:運(yùn)用正、余弦定理將角的三角函數(shù)式化為邊的等式.

整理,得,∴a=b

∴△ABC為等腰三角形.

關(guān)于三角形的形狀的判定問題的解決方法主要有兩種途徑:(1)化邊為角;(2)化角為邊.常常用正弦(余弦)定理實(shí)施邊角轉(zhuǎn)換.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若∠C=60°,則
a
b+c
+
b
a+c
=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù).
②命q:?x∈R,tanx=1;命題p:?x∈R,x2-x+1>0,命題“p∧¬q”是假命題;
③函數(shù)y=f(x)的圖象與直線x=a至多一個(gè)交點(diǎn).
④在△ABC中,若
AB
CA
>0,則∠A為銳角
其中正確的命題有( 。﹤(gè).(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b+c=
2
+1
,C=45°,B=30°,則b、c的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①若命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”
②函數(shù)y=3•2x+1的圖象可以由函數(shù)y=2x的圖象僅通過平移得到
③函數(shù)y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函數(shù)
④在△ABC中,若
AB
BC
3
=
BC
CA
2
=
CA
AB
1
,則tanA:tanB:tanC=3:2:1
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若A=105°,B=45°,b=2
2
,則邊長(zhǎng)c=( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案