如圖長(zhǎng)方體中,底面是正方形,是的中點(diǎn),是棱上任意一點(diǎn).
⑴求證:;
⑵如果,求的長(zhǎng).
(1)證明見解析;(2).
解析試題分析:(1)要證線線垂直,一般可先證線面垂直,這個(gè)平面要包含其中一條直線,本題中有許多垂直關(guān)系,如,而平面,因此有平面,正好是平面內(nèi)的直線,問題得證;(2)我們采取空間問題平面化,所有條件都可在矩形內(nèi),利用平面幾何知識(shí)解題,由于,則有,這兩個(gè)三角形中,有,又,這時(shí)可求出,從而求出的長(zhǎng).
試題解析:(1)是正方形,∴,又長(zhǎng)方體的側(cè)棱平面,∴,
,故有平面,又,∴. 7分
(2)在長(zhǎng)方體中,是矩形,由,得,∴,從而,∴,又底面正方形的邊長(zhǎng)為2,故,,又,∴,從而. 14分
說明:用空間向量知識(shí)求解相應(yīng)給分.
考點(diǎn):(1)空間兩直線垂直;(2)求線段長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點(diǎn)A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求與所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時(shí),求PA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長(zhǎng)方體中,為中點(diǎn).
(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說明理由;
(3)若二面角的大小為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,平面,,為側(cè)棱上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:平面;
(2)在的平分線上確定一點(diǎn),使得平面,并求此時(shí)的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正方形ADEF與梯形ABCD所在平面互相垂直,,,,點(diǎn)M在線段EC上且不與E,C重合.
(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐M BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
右圖是一個(gè)直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,,.
(1)設(shè)點(diǎn)是的中點(diǎn),證明:平面;
(2)求二面角的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知矩形中,,,將矩形沿對(duì)角線把折起,使移到點(diǎn),且在平面上的射影恰好在上.
(1)求證:;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com