【題目】對于任意實(shí)數(shù)x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為 .
【答案】44
【解析】解:∵[x]表示不超過x的最大整數(shù),A={y|y=f(x),0<x<1},當(dāng)0<x< 時,0<2x< ,0<4x< ,0<8x<1,f(x)=[2x]+[4x]+[8x]=0+0+0=0;
當(dāng) ≤x< 時, ≤2x< , ≤4x<1,1≤8x<2,f(x)=[2x]+[4x]+[8x]=0+0+1=1;
當(dāng) ≤x< 時, ≤2x< ,1≤4x< ,2≤8x<3,f(x)=[2x]+[4x]+[8x]=0+1=2=3;
當(dāng) ≤x< 時, ≤2x<1, ≤4x<2,3≤8x<4,f(x)=[2x]+[4x]+[8x]=0+1+3=4;
當(dāng) ≤x< 時,1≤2x< ,2≤4x< ,4≤8x<5,f(x)=[2x]+[4x]+[8x]=1+2+4=7;
當(dāng) ≤x< 時, ≤2x< , ≤4x<3,5≤8x<6,f(x)=[2x]+[4x]+[8x]=1+2+5=8;
當(dāng) ≤x< 時, ≤2x< ,3≤4x< ,6≤8x<7,f(x)=[2x]+[4x]+[8x]=1+3+6=10;
當(dāng) ≤x<1時, ≤2x<2, ≤4x<4,7≤8x<8,f(x)=[2x]+[4x]+[8x]=1+3+7=11;
∴A={0,1,3,4,7,8,10,11}.
∴A中所有元素之和為0+1+3+4+7+8+10+11=44.
所以答案是:44.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為件時,銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量的函數(shù)為,求;
(2)當(dāng)該公司的年產(chǎn)量為多少件時,當(dāng)年所獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實(shí)根,求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,,且當(dāng)時,是與的等差中項.數(shù)列為等比數(shù)列,且,.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時,若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)y=f(x),當(dāng)x≥0時,f(x)=x2﹣2x.
(1)求當(dāng)x<0時,函數(shù)y=f(x)的解析式,并在給定坐標(biāo)系下,畫出函數(shù)y=f(x)的圖象;
(2)寫出函數(shù)y=|f(x)|的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知2x≤256,且log2x≥ .
(1)求x的取值范圍;
(2)求函數(shù)f(x)=log2( )log2( )的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)f(log2x)的定義域是(2,4),則函數(shù) 的定義域是( )
A.(2,4)
B.(2,8)
C.(8,32)
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com